【状态估计】基于卡尔曼滤波器的传感器直流电机驱动研究(Matlab代码、Simulink实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、Simulink实现


💥1 概述

卡尔曼滤波算法最先由美国学者 R.E.Kalman 提出,它最早是用来解决离散线性系统滤波的问题[60],该算法一经提出就得到广泛关注。卡尔曼滤波器属于随机观测器,采用状态空间法在时域内设计滤波器,使用线性最小方差估计,有良好的滤波性能。卡尔曼滤波器是一组数学方程,用一种有效的递归方法来估计系统的状态,在考虑系统的输入、输出随机干扰的情况下,得到满足最小均方根误差的最优估计,可以有效的削弱随机干扰和测量噪声的影响。因为它采用递推的方法,为方便数字化实现,还可以将算法进行离散化。随着计算机控制技术的发展,其计算复杂性已经不再是障碍,所以卡尔曼滤波器逐渐得到了大家的重视,如今已广泛应用于各个领域,如导航制导、工业控制、目标跟踪、大地测量和金融等。卡尔曼滤波器系统结构如图 3-1 所示,下面介绍离散系统卡尔曼滤波器的原理[61] [62]。

系统的状态方程和量测方程为:

​ 

  

一、引言

本文档旨在探讨基于卡尔曼滤波器的传感器直流电机驱动的状态估计方法。卡尔曼滤波器作为一种高效的递归估计算法,能够在考虑系统输入、输出随机干扰的情况下,得到满足最小均方根误差的最优估计,因此被广泛应用于各种动态系统的状态估计中。本文将卡尔曼滤波器应用于直流电机驱动的状态估计,以提高电机控制的准确性和稳定性。

二、卡尔曼滤波器原理

卡尔曼滤波器是一种随机观测器,它采用状态空间法在时域内设计滤波器,并使用线性最小方差估计来优化滤波性能。其基本原理是,通过递归地更新系统的状态估计和协方差矩阵,来最小化估计误差。在具体实现中,卡尔曼滤波器根据系统的状态方程和量测方程,以及系统的输入和输出数据,进行状态预测和更新。

三、直流电机驱动系统模型

为了将卡尔曼滤波器应用于直流电机驱动的状态估计,首先需要建立直流电机驱动系统的数学模型。该模型应包括电机的电气方程、机械方程以及传感器方程等,以全面描述电机的动态行为。在建立模型时,需要考虑电机的参数(如电阻、电感、转动惯量等)以及外部干扰(如负载变化、电源波动等)。

四、基于卡尔曼滤波器的状态估计方法

在建立了直流电机驱动系统的数学模型后,可以利用卡尔曼滤波器进行状态估计。具体步骤如下:

  1. 初始化:设置卡尔曼滤波器的初始状态估计和协方差矩阵。
  2. 状态预测:根据系统的状态方程和上一时刻的状态估计,预测当前时刻的状态。
  3. 量测更新:利用传感器的量测数据和系统的量测方程,更新当前时刻的状态估计和协方差矩阵。
  4. 递归迭代:重复步骤2和步骤3,直到达到所需的估计精度或迭代次数。

五、实验结果与分析

为了验证基于卡尔曼滤波器的状态估计方法的有效性,可以进行一系列的实验。实验过程中,应记录电机的实际状态(如速度、位置等)以及卡尔曼滤波器的估计状态,并进行对比分析。通过实验结果,可以评估卡尔曼滤波器在直流电机驱动状态估计中的性能表现,包括估计精度、鲁棒性等。

六、结论与展望

本文研究了基于卡尔曼滤波器的传感器直流电机驱动的状态估计方法。通过理论分析和实验验证,证明了该方法的有效性。未来,可以进一步探索卡尔曼滤波器在更复杂电机控制系统中的应用,以及与其他优化算法的结合使用,以提高电机控制的性能和稳定性。

综上所述,基于卡尔曼滤波器的传感器直流电机驱动研究具有重要的理论意义和实际应用价值,为电机控制领域的发展提供了新的思路和方法。

📚2 运行结果

 

 

​ 

​ 

​ 

部分代码:

% Parametry silnika
% 1G 7 5102-0EE 77 -4TV1
Un = 280; %V
wn = 1640*pi/30; %rad/s
Pn = 1.52e3; %W
Tn = 8.85; %Nm
In = 7.2; %A
Ra = 6.41; %Ohm
La = 23e-3; %H
PSI_M = Tn/In;
PSI_E = (Un-Ra*In)/wn;
J = 0.013*2; %kgm2
Ts = 1e-4;
Tdelay = 2*Ts;
% Wariancje szumow
% System
rng('shuffle');
rand_seed_1 = round(rand*(2^32-1));
rand_seed_2 = round(rand*(2^32-1));
rand_seed_3 = round(rand*(2^32-1));
rand_seed_4 = round(rand*(2^32-1)); 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]曹正鑫. 基于改进的卡尔曼滤波算法的电机参数估计[D].南京邮电大学,2021.DOI:10.27251/d.cnki.gnjdc.2021.000567.

[2]张祥虎. 基于卡尔曼滤波的无刷直流电机无传感器控制[D].中国矿业大学,2015.

[3]刘思华,张树春.用扩展卡尔曼滤波器估计无刷直流电机转子位置和转速[J].微电机(伺服技术),2006(06):8-10+18.DOI:10.15934/j.cnki.micromotors.2006.06.003.

🌈4 Matlab代码、Simulink实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值