总结 | 有关激光雷达的Q&A

来源丨AIoT工业检测、小小光08

点击进入—>3D视觉工坊学习交流群

1. 激光雷达的主要应用场景?

c21c636d8af5c59330ed26800f169aef.png

2. 不同无人驾驶传感器的优缺点?

098ab805d1fcd9d7a91ab89cf76833c3.png

3. 车载激光雷达的技术路线有哪些?

f97cbd763ea53328dcb1a4d176a36462.png

4. 按扫描方式区分,车载激光雷达的特点是什么?

a31fef440bfa47f2bf6d4b607bfb36a8.png

5. 激光雷达的主要性能指标是什么?

722ed5a4ee7bd3987d994dd29d59c2f3.png

44bdcfa2ab45a1f1d37968d9540f5678.png

6. 激光雷达的硬件模块有哪些?

69d8e57d9496b282ae7c4c4ecbbd7048.png

7. 车载激光雷达的发展阶段有哪些?

4f820085e1b5b7c374b55805a7dbfc22.png

8. 目前,车载激光雷达的物体探测方式有哪些?

05ca4b02dd17e1e174d8e2f2fd8d5e8a.png

9. 激光雷达的发射器和接收器有哪些类型?

1652450cff848c786eea1ca77fa78543.png

10. 激光雷达的激光器波长有哪些?

9887f3eee82fbd403528a84f6da20326.png

11. 影响激光雷达探测距离有哪些因素?

激光雷达测距公式:

b136af95f2fdc36bfc6837f1bf7fcba4.png

其中,

a46e574b906375a5bea90b1599051659.png

激光发射功率越高,探测距离越远。激光发射功率的提高主要取决于激光芯片的 光功率密度。若发射功率提高1倍,则激光雷达探测距离将提升19%。而激光芯片的发射功率是激光芯片功率密度发光面积两者的乘积,发光面积由于激光雷达体积、激光芯片技术、成本、光学系统设计难易程度四个方面原因的制约,提升空间有限;所以激光芯片的光功率密度成为提高激光发射功率从而提升激光雷达探测距离的关键指标。

光电探测器最小可探测功率越小,探测距离越远。最小可探测功率取决于PDE和暗计数。若PDE提高1倍,即最小可探测功率减小50%,则激光雷达探测距离将提升19%。光电探测器的基本功能是把入射光功率转化为相应的光电流。最小可探测功率表示APDSPADSiPM 等光电探测器所能探测到的最小入射光功率,入射光功率低于这个值 则将被噪声淹没无法被探测器探测到;NEP代表在信噪比为1时所需要的最小输入光信号功率,所以NEP代表了最小可探测功率。

激光发散角越小,探测距离越远。激光发散角取决于发射光学系统的准直性能。若发散角减小50%,则激光雷达探测距离将提升41%。不论VCSEL还是EEL,激光从激光芯片发射出来都存在一定的发散角θ,发散角直接影响了激光发射到目标物体表面的光斑面积从而影响了激光打在目标物体上的光功率密度,最终影响从目标物体表面反射回探测器表面的入射光功率。激光雷达的发射光学系统中一般有准直镜和扩束镜,能够减小激光的发散角。但是即使光学系统的准直性能再好,激光光束也不可能完全准直到0,始终存在一定的发散角,不可能完全是平行光,光学系统只可能尽可能减小发散角。例如,VCSEL的远场发散角典型值为25°,如果不进行准直,传播到100米处时光斑的半径就会变成47米,由此可见通过准直减小光束发散角的重要性。

本文仅做学术分享,如有侵权,请联系删文。
点击进入—>3D视觉工坊学习交流群
干货下载与学习

后台回复:巴塞罗那自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件
后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf
后台回复:3D视觉课程,即可学习3D视觉领域精品课程
3D视觉工坊精品课程官网:3dcver.com
1.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
2.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
3.国内首个面向工业级实战的点云处理课程
4.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
5.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
6.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
7.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)8.从零搭建一套结构光3D重建系统[理论+源码+实践]
9.单目深度估计方法:算法梳理与代码实现10.自动驾驶中的深度学习模型部署实战11.相机模型与标定(单目+双目+鱼眼)12.重磅!四旋翼飞行器:算法与实战13.ROS2从入门到精通:理论与实战14.国内首个3D缺陷检测教程:理论、源码与实战15.基于Open3D的点云处理入门与实战教程16.透彻理解视觉ORB-SLAM3:理论基础+代码解析+算法改进重磅!粉丝学习交流群已成立
交流群主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、ORB-SLAM系列源码交流、深度估计、TOF、求职交流等方向。扫描以下二维码,添加小助理微信(dddvisiona),一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。
▲长按加微信群或投稿,微信号:dddvisiona3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看,3天内无条件退款高质量教程资料、答疑解惑、助你高效解决问题觉得有用,麻烦给个赞和在看~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值