AI大模型:多种RAG优化策略,收藏这一篇就够了!!

大模型:多种RAG优化策略

图片

大模型中有几种 RAG(Retrieval-Augmented Generation)优化策略的介绍,包括 Agentic RAG、Adaptive RAG、Corrective RAG 和 Self-RAG。

图片

Agentic RAG

Agentic RAG 强调在生成过程中引入“智能代理”(agent),使得模型能主动决定何时调用检索模块以及如何利用检索到的信息。也就是说,生成模块和检索模块之间存在一种决策交互,模型可以自主判断当前任务中是否需要查找外部知识,并选择最合适的检索方式。

Agentic RAG 是将检索增强生成与 Agent 融合,使检索过程具备决策和推理能力。

图片

工作原理如下

1、检索变得代理化代理(路由器)使用不同的检索工具(例如向量搜索或网络搜索),并根据上下文动态决定调用哪个工具。

2、动态路由代理(路由器)确定最佳路径。例如:

如果用户查询需要私人知识,它可能调用向量数据库。对于一般查询,它可能选择网络搜索或依赖预训练知识。

这种架构将 RAG 转变为一个更智能、更适应性强的管道,用于构建复杂的 AI 系统。

Corrective Retrieval

论文:Corrective Retrieval Augmented Generation

CRAG(Corrective RAG)相比于以往的 RAG,增加了一个用于矫正检索到的文档和 user query 之间知识[相关性]的模块。

图片

步骤

1、Retrieval 阶段:retriever 先根据 user query 检索到相关的 docs

2、Knowledge Correction 阶段:这里引入了一个轻量级的 Retrieval Evaluator 来评估检索到的 docs 与 user query 之间的相关性分数,并根据这个相关性分数,触发三种 action —— Correct、Incorrect 和 Ambiguous:

  • Correct:表示检索到的 doc 是有一定相关性的,但尽管一个 doc 被认为是相关的,该 doc 其中仍会存在噪音信息,因此需要进一步地 refine,所以这里将 docs 做 de-compose 得到多个 knowledge strips,然后从中过滤出有用的 strip 并 re-compose,得到矫正后的 doc。
  • Incorrect:表示可以认为说检索到的 docs 对 query 没有帮助,因此需要寻找新的知识源,这里引入 web searcher 来从 Internet 上进行检索,并从中选出有用的知识,得到矫正后的 doc。
  • Ambiguous:表示 retrieval evaluator 也没有信心说 docs 是否与 query 有关了,这个时候会同时做 Correct 和 Incorrect 时的动作,从而提高系统的鲁棒性和可靠性。

3、Generation 阶段:将矫正后的 doc 与 user query 进行拼接,交给 LLM Generator 来完成问题的回答。

Adaptive RAG

概述研究人员提出了一种自适应QA框架-[adaptive RAG],根据查询复杂度从最简单到最复杂的LLM中动态选择最合适的策略。该框架用小LM训练了一个分类器,预测查询的复杂程度。这一方案在迭代和单步Retrieval-Augmented LLM以及无需检索方法之间实现了无缝自适应响应各种复杂度的查询。

图片

方案原理

Adaptive-RAG通过判断问题的复杂性自动选择使用哪种RAG策略。作者将问题划分为三类(如上图的C部分):

  • 开放域问答:这类任务通常涉及两个模块:[检索器]和[阅读器]。随着具有千亿参数的超强推理能力的LLM的出现,LLM和检索器之间的协同作用已经取得了显著进展。然而,尽管在单跳检索增强LLM方面取得了进展,但某些查询的复杂性需要更复杂的策略。
  • [多跳问答]:多跳问答(Multi-hop QA)是常规开放域问答(Open-domain QA)的扩展,需要系统全面收集和将多个文档的信息作为上下文回答更复杂的查询。首先将多跳查询分解为更简单的单跳查询,重复访问LLM和检索器来解决这些子查询,并合并它们的答案以形成完整答案。这种查询的缺点是:每个查询迭代访问LLM和检索器可能效率极低,因为有些查询可能足够简单,可以通过单一检索步骤甚至仅通过LLM本身来回答。
  • [自适应检索]:为了处理不同复杂性的查询,自适应检索策略根据每个查询的复杂性动态决定是否检索文档。根据实体的频率来确定查询的复杂性级别,并建议仅当频率低于一定阈值时才使用检索模块。然而,这种方法仅关注于检索与否的二元决策,可能不足以解决需要多个推理步骤的更复杂的查询。

策略

Adaptive Retrieval-Augmented Generation (Adaptive-RAG) 是一种新颖的问答框架,它能够根据问题的复杂性动态选择最适合的策略来处理Retrieval-Augmented LLM。这三种策略包括

  1. [非检索方法](No Retrieval):这是最简单的策略,直接使用LLM本身的知识库来生成答案。这种方法适用于那些模型已经知道答案的简单问题,不需要额外的外部信息。
  2. [单步检索方法](Single-step Approach):当问题需要额外的信息时,这种方法会先从外部知识源检索相关信息,然后将检索到的文档作为上下文信息输入到LLM中,帮助模型生成更准确的答案。这种方法适用于需要一次额外信息检索的中等复杂度问题。
  3. [多步检索方法](Multi-step Approach):对于最复杂的问题,需要从多个文档中综合信息并进行多步推理。这种方法通过迭代地访问检索器和LLM,逐步构建起解决问题所需的信息链。这种方法适用于需要多步逻辑推理的复杂问题。

关键步骤:

  1. 定义复杂性标签:首先,需要定义问题的复杂性等级。在Adaptive-RAG中,通常有三个类别:简单(A)、中等(B)和复杂(C)。简单问题可以直接由LLM回答,中等复杂度问题需要单步检索,而复杂问题则需要多步检索和推理。
  2. 自动收集训练数据:由于没有现成的带有复杂性标签的查询数据集,Adaptive-RAG通过两种策略自动构建训练数据集:- 从不同Retrieval-Augmented LLM策略的预测结果中标注查询的复杂性。如果非检索方法能够正确生成答案,则对应问题的标签为简单(A);如果单步检索方法和多步检索方法都能正确回答,而非检索方法失败,则对应问题的标签为中等(B);如果只有多步检索方法能够正确回答,则对应问题的标签为复杂(C)。- 利用基准数据集中的固有偏差来标注未标记的查询。例如,如果一个查询在单步数据集中未被标记,则自动分配标签为中等(B);如果在多步数据集中未被标记,则自动分配标签为复杂(C)。
  3. 训练分类器:使用自动收集的查询-复杂性对数据集,训练一个较小的语言模型作为分类器。这个分类器的目标是根据 query 预测其复杂性级别。训练过程中,使用交叉熵损失函数,并选择在验证集上表现最佳的迭代次数。
  4. 评估和优化分类器:在训练完成后,评估分类器的性能,包括准确率和其他相关指标。如果分类器的性能不足,可能需要进一步优化,例如通过调整模型结构、增加训练数据或改进数据标注策略。
  5. 集成到Adaptive-RAG框架:将训练好的分类器集成到Adaptive-RAG框架中。在推理阶段,分类器用于预测新问题的复杂性,然后根据这个预测结果选择最合适的问答策略。

Self-RAG

Self-reflective Retrieval-Augmented Generation (Self-RAG)

图片

核心步骤:

Step 1: 基于同样的提示,按需进行检索。这意味着可能不是一次性检索所有文档,而是根据需要逐个检索。

Step 2: 并行生成各个段落,每个提示后都跟着一个检索到的文档。例如,Prompt + 1会生成与第一个文档相关的内容,同理,Prompt + 2和Prompt + 3也是如此。

Step 3: 对输出进行评价,并选择最佳的段落。这一步骤是Self-RAG的核心,它使模型能够评判自己的输出,选择最准确和相关的段落,并对其进行迭代或改进。

图中还展示了Self-RAG模型在处理不同类型的问题时可能的行为。例如,在请求写一篇关于“最佳夏日假期”的文章时,模型可能会选择不进行检索,直接生成答案。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值