RANSAC估计——以直线拟合为例
RANSAC(RANdom SAmple Consensus),即随机采样一致性。该方法最早是由Fischler和Bolles提出的一种鲁棒估计方法,最早用于计算机视觉中位姿估计问题,现在已广泛应用于已知模型的参数估计问题中。对于数据中存在大比例外点(错误数据、野值点)时,RANSAC方法十分有效。下面就以直线估计的例子来说明RANSAC的基本思想。
直线拟合RANSAC估计基本原理
RANSAC的思想比较简单,主要有以下几步:
- 随机选择两点(确定一条直线所需要的最小点集);由这两个点确定一条线 l ;
- 根据阈值
t ,确定与直线 l 的几何距离小于t 的数据点集 S(l) ,并称它为直线 l 的一致集;- 重复若干次随机选择,得到直线
l1 , l2 ,…,