从 MedRAG 到 i-MedRAG|新型多轮搜索机制显著提高大模型医学能力

背景

近年来,大语言模型 (LLMs) 如 GPT 系列已展示出解决医学问答任务的巨大潜力。然而,单凭模型内部预训练的固有知识往往难以应对医学领域中高精度、高复杂度的问答任务。而传统的检索增强生成 (RAG) 虽能补充外部知识,却通常局限于单轮检索,无法有效处理需要多步推理与连续信息整合的问题。

为了解决这些挑战,我们在此前推出的 MedRAG 基础上,进一步提出一种全新的迭代检索增强生成框架 i-MedRAG,让大模型能够根据历史检索结果动态生成跟进查询 (follow-up queries),逐步获取关键信息,形成完整的逻辑推理链,从而显著提升复杂医学问答的性能。

MedRAG 回顾:突破大模型的知识瓶颈

MedRAG 作为我们早期的研究成果,首次系统性地评估了RAG在医学问答中的表现。通过引入检索器 (如BM25、MedCPT) 与权威医学语料库 (如PubMed、StatPearls),MedRAG 有效提升了模型在多项医学问答基准上的性能,特别是在零样本 (zero-shot) 设定下为大模型补充了外部知识。

MedRAG 的亮点包括:1. 外部知识补充:减少模型幻觉 (hallucination),提高答案准确性;2. 稳定提升:在不同数据集任务上表现优异,特别是 PubMed 语料库的广泛适配性;3. 综合评估:针对不同检索器与语料组合的性能差异进行了详细探究。

i-MedRAG: 迭代检索实现复杂推理

尽管 MedRAG 已取得显著提升,但面对复杂的临床推理场景(如 USMLE 题目)时,传统 RAG 的单轮检索依旧存在两个问题:1. 信息不完整:检索器只能基于初始查询返回信息,难以逐步定位复杂问题中的关键信息。2. 检索效果受限:初始查询往往过于宽泛,导致无法找到精准答案。

为了解决这些挑战,我们提出 i-MedRAG,将跟进查询 (follow-up queries) 引入MedRAG 框架,让大模型能够:1. 动态生成查询:根据历史检索结果生成后续问题,逐步定位关键信息;2. 构建信息链条:通过多轮检索与推理,形成完整逻辑链,找到准确答案。

性能突破:新 SOTA 成绩

在美国医学执照考试 (MedQA-USMLE) 数据集上,i-MedRAG 在零样本 (zero-shot) 设定下,使用 GPT-3.5 实现了 69.68% 的准确率,不仅超过了前代 MedRAG (66.61%),还超越了现有的 few-shot 和 fine-tuned 方法,例如 MedAdapter 的 68.66% 和 LLM-AMT 的 67.90%。

此外,i-MedRAG 在多个模型和数据集上的表现证明了其广泛的适应性:GPT-3.5 与 Llama-3.1-8B 在 MedQA 和 MMLU-Med 上均实现性能提升。i-MedRAG 在需要分步信息检索的 MedQA-USMLE 任务中效果尤为显著。

案例解析:多轮查询精准定位答案

面对复杂的医学问答,传统 RAG 往往难以找到关键信息。我们通过一个药物机制问题,展示 i-MedRAG 如何通过迭代检索与推理,精准解决挑战。传统方法的 CoT 模型凭借固有知识猜测「自由基生成」,但未能准确定位药物。而 MedRAG 的单轮检索未找到明确的药物信息,无法给出结论。i-MedRAG 通过分步的检索和推理,先锁定药物顺铂,再进一步搜索得到其作用机制是通过与 DNA 发生交联,导致 DNA 链断裂,从而抑制癌细胞增殖。因此最终答案为 D。

可扩展性分析:探索迭代次数与查询数量的影响

我们进一步分析了 i-MedRAG 的可扩展性,重点探究了两个核心超参数对性能的影响:1. 迭代次数 (Iterations): 模型生成多少轮跟进查询;2. 每轮查询数量 (Queries per Iteration): 每轮生成的查询数量。

在复杂任务(MedQA-USMLE)上,随着迭代次数的增加,模型性能逐步提升,表现出显著的正相关关系。在较简单任务(MMLU-Med)上,模型性能在一至两轮查询后迅速收敛,过多迭代反而可能引入冗余信息。而查询数量的影响在于:每轮生成更多查询可以加速性能提升,但也导致收敛更快。同时,适量的查询设置能在提升效果与效率之间取得平衡。

总结:从 MedRAG 到 i-MedRAG

MedRAG 突破了大模型固有知识的瓶颈,而 i-MedRAG 进一步实现了复杂任务中的逐步信息获取,使大模型具备了「会问问题」的能力。在零样本设定下,我们通过 i-MedRAG 实现了新 SOTA 性能,为医学问答任务带来了新的解决方案。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值