基于Q-Learning的机器人路径规划算法及其在MATLAB环境下的仿真研究

在自动化与智能机器人领域,路径规划是确保机器人能够高效自主行动的核心问题。本文提出了一种基于Q-Learning强化学习算法的路径规划方法,旨在通过自主学习找到最优路径,使机器人能够在复杂环境中避障并到达目标位置。为了验证该算法的有效性,我们在MATLAB环境下进行了仿真,设计了多种环境条件,测试了算法的适应性和收敛性。结果表明,基于Q-Learning的路径规划算法能够有效收敛,规划出最优路径,且在面对不同环境时具有较强的适应能力。本文的研究为智能机器人路径规划提供了一种新的解决方案。

算法流程

运行效果

运行 PathPlanning.m
(1)主界面

(2)图1(迭代次数 vs. 试验次数)

分析:该图显示了每次试验所需的迭代次数。最初,迭代次数较高,随着试验次数的增加,迭代次数逐渐减少。这表明系统或模型随着时间的推移在收敛或学习&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值