基于YOLOv10深度学习的医学影像宫腔镜图像良恶性病变检测与语音报警系统

宫腔镜影像检查是子宫相关疾病诊断的重要工具,尤其在黏膜下子宫肌瘤、子宫内膜癌等病变的早期发现中具有不可替代的作用。然而,由于医生在诊断过程中的经验差异及对复杂病变的主观判断,部分病变可能面临漏诊或误诊的风险,直接影响患者的治疗效果和预后。为了有效提高宫腔镜影像中病变检测的效率和准确性,本文提出了一种基于YOLOv10深度学习模型的宫腔镜图像良恶性病变检测与实时语音报警系统。系统采用先进的深度学习技术,通过PyQt5开发用户友好型交互界面,整合了宫腔镜图像的实时采集、病变检测与分类、数据可视化展示及语音报警等多功能模块,旨在为临床诊断提供一套高效、智能的辅助诊断工具。

针对宫腔镜影像中常见的8类病变,包括黏膜下子宫肌瘤、子宫内膜癌、子宫内膜息肉、子宫内膜息肉样增生、子宫内膜增生不伴不典型增生、宫内异物、子宫颈息肉及子宫内膜不典型增生,本文构建了一个覆盖多样化病变特征的高质量宫腔镜影像数据集。

本文系统不仅实现了宫腔镜图像的自动化分析与实时反馈,还显著减少了人工判断中的不确定性,为宫腔镜影像辅助诊断提供了一种创新的解决方案。通过将深度学习算法与临床需求深度融合,该系统在实际医疗场景中展现出了广阔的应用前景,不仅能够帮助医生优化诊断流程,还能为患者提供更高效、更可靠的治疗建议。这项研究为宫腔镜辅助诊断领域注入了新动能,为未来人工智能技术在医学影像领域的进一步发展奠定了坚实基础。

算法流程

Tipps:深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。

项目数据

Tipps:通过搜集关于数据集为各种各样的宫腔镜图像良恶性病变图像,并使用Labelimg标注工具对每张图片进行标注,分8个检测类别,分别是’黏膜下子宫肌瘤’,’子宫内膜癌’,’子宫内膜息肉’,’子宫内膜息肉样增生’,’子宫内膜增生不伴不典型增生’,’宫内异物’,’子宫颈息肉’,’子宫内膜不典型增生’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。

注意:这里的中心点坐标、宽和高都是相对数据!!!

存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。

完成后可进行后续的yolo训练方面的操作。

模型训练

Tipps:模型的训练、评估与推理

1.YOLOv10的基本原理

YOLOv10是YOLO最新一代版本的实时端到端目标检测算法。该算法在YOLO系列的基础上进行了优化和改进,旨在提高性能和效率之间的平衡。首先,作者提出了连续双分配方法,以实现NMS-free训练,从而降低了推理延迟并提高了模型的性能。其次,作者采用了全面的效率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值