目录
一、引言
在当今的数据分析领域,处理具有空间相关性的数据变得越来越重要。空间误差模型(Spatial Error Model,SEM)作为空间计量经济学中的重要模型之一,能够有效地捕捉数据中的空间依赖关系。本文将详细介绍空间误差模型的理论原理,并通过实际数据在 Stata 中的实证分析,展示其具体操作步骤。
二、空间误差模型的理论原理
三、数据
为了进行实证分析,我们收集了中国各省份的经济数据,包括地区生产总值(GDP)作为因变量 ,以及固定资产投资(INV)、劳动力数量(LABOR)和教育水平(EDU)作为自变量 。同时,我们基于各省份之间的地理邻接关系构建了空间权重矩阵 。
四、Stata 程序代码及解释
* 安装所需的空间计量经济学命令
ssc install spreg, replace
ssc install spatwmat, replace // 用于生成空间权重矩阵
* 导入数据
import delimited "provincial_data.csv", clear
* 生成空间权重矩阵(假设基于邻接关系)
spatwmat using "province_adjacency.dta", name(W) standardize // 标准化空间权重矩阵
* 估计空间误差模型
spregress gdp inv labor edu, wmat(W) model(error)
* 查看估计结果
estimates table
* 进行模型检验
testnl _b[inv] =