一、概述
TPU-MLIR是一个专注于AI芯片的TPU编译器开源工程,提供了一套完整的工具链,可以将不同框架下预训练过的深度学习模型,转化为可以在TPU(Tensor Processing Unit)上运行的二进制文件(如bmodel),从而实现更高效的推理。
二、核心特点
- 多框架统一处理:TPU-MLIR支持多种神经网络框架,如PyTorch、ONNX、TFLite和Caffe等,且处理流程完全统一。这意味着用户无需为不同的框架编写特定的转换代码,只需使用TPU-MLIR即可实现模型转换。
- 分层设计:TPU-MLIR采用了分层设计,将网络模型抽象成两层处理:TOP层和TPU层。TOP层与芯片无关,包括图优化、量化、推理等;而TPU层与芯片相关,包括权重重排、算子切分、地址分配、推理等。这种设计使得TPU-MLIR能够更好地适应不同的硬件平台。
- 正确性保证:TPU-MLIR在转换过程中,通过多层验证来确保模型的正确性。例如,TOP层推理结果与ONNX结果对比验证,TPU层推理结果与TOP层对比验证,以及Cmodel推理结果与TPU层对比验证等。这些验证步骤确保了模型在转换过程中