【目标检测】目标检测技术发展的综述

目标检测是计算机视觉领域的核心任务之一,旨在定位和识别图像中特定对象的位置及类别。自20世纪90年代至今,其发展经历了从传统算法到深度学习方法的重大跨越。以下是对目标检测技术发展的综述:


一、传统方法阶段(2012年前)

在深度学习兴起之前,目标检测主要依赖人工设计特征和分类器的组合:

  1. Viola-Jones检测器(2001)​
    基于Haar特征和级联分类器,专为实时人脸检测设计。缺点是通用性差,仅适用于固定场景。
  2. HOG(方向梯度直方图)+ SVM(2005)​
    Dalal等人提出的HOG特征结合SVM分类器,被广泛用于行人检测,但特征表达能力有限。
  3. DPM(可变形部件模型,2008)​
    通过分部件建模和图像金字塔处理多尺度目标,曾在PASCAL VOC竞赛中表现优异,但复杂度高、速度慢。

传统方法的局限:依赖人工特征、难以处理复杂场景、泛化能力弱。


二、深度学习两阶段方法(2012-2016)

2012年AlexNet的突破催生了基于深度学习的目标检测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值