目标检测是计算机视觉领域的核心任务之一,旨在定位和识别图像中特定对象的位置及类别。自20世纪90年代至今,其发展经历了从传统算法到深度学习方法的重大跨越。以下是对目标检测技术发展的综述:
一、传统方法阶段(2012年前)
在深度学习兴起之前,目标检测主要依赖人工设计特征和分类器的组合:
- Viola-Jones检测器(2001)
基于Haar特征和级联分类器,专为实时人脸检测设计。缺点是通用性差,仅适用于固定场景。 - HOG(方向梯度直方图)+ SVM(2005)
Dalal等人提出的HOG特征结合SVM分类器,被广泛用于行人检测,但特征表达能力有限。 - DPM(可变形部件模型,2008)
通过分部件建模和图像金字塔处理多尺度目标,曾在PASCAL VOC竞赛中表现优异,但复杂度高、速度慢。
传统方法的局限:依赖人工特征、难以处理复杂场景、泛化能力弱。
二、深度学习两阶段方法(2012-2016)
2012年AlexNet的突破催生了基于深度学习的目标检测