PSINS初始对准方法

初始对准方法

初始对准方法较多,适用环境不同:
alignsb:解析式对准,适用于静基座或微晃动环境;
aligni0:惯性凝固系初始对准(间接对准),抗角晃动干扰能力强(同上);
aligncmps:罗经法精对准(基本不用了);
alignfn/vn:以比力/速度误差为观测量的Kalman滤波精对准;
aligni0vn:基于数据复用技术,惯性系粗+速度量测Kalman滤波精对准(地球人都知道的最好的初始对准方法);
还有一些示例函数:
test_align_ekf:大方位失准角EKF滤波初始对准仿真(当方位角很大,两个水平角很小时);
test_align_ukf:大失准角EKF滤波初始对准(当三个角都很大时);
test_align_two_position:双位置对准(在0位置惯导停一段时间,旋转180度(增加或减少),在对面的角位置又停了相同时间);
test_align_rotation:单轴旋转对准;
test_align_transfer:速度+姿态匹配传递对准;
test_align_methods_compare/lgimu几种对准方法比较仿真/实测数据。

惯性系粗对准+数据存储+Kalman滤波精对准例子

aligni0vn函数代码如下:

function att1 = aligni0vn(imu, pos, t1)
% SINS initial align based on inertial-frame & vn-meas method.
%
% Prototype: att0 = aligni0(imu, pos, t1)
% Inputs: imu - IMU data
%         pos - position
%         t1 - inertial-frame align time
% Output: att1 - attitude align result
%
% Example:
%     glvs;
%     [imu, avp0, ts] = imufile('lasergyro.imu');
%     att = aligni0vn(imu(1:300/ts,:), avp0(7:9)', 180);
%
% See also  aligni0, alignvn.

% Copyright(c) 2009-2020, by Gongmin Yan, All rights reserved.
% Northwestern Polytechnical University, Xi An, P.R.China
% 23/11/2020
global glv
    ts = imu(2,end)-imu(1,end);
    if nargin<3, t1 = 30; end
    if(length(pos)>4) pos=pos(4:6); end
    imu1 = imu(1:fix(min(imu(end,end)-imu(1,end),t1)/ts),:);
    [att0, res0] = aligni0(imu1, pos, ts);  % coarse align
    [att0, iatt] = attrvs(imu1, att0, pos);  % reverse attitude update
	phi = [1.1; 1.1; 10]*glv.deg;
	imuerr = imuerrset(0.002, 20, 0.001, 10);
	wvn = [0.01; 0.01; 0.01]*10;
	[att1, attk] = alignvn(imu, a2qua(att0), pos, phi, imuerr, wvn);  % fine align
    insplot(attk,'a');
    subplot(211), plot(res0.attk(:,end), res0.attk(:,1:2)/glv.deg, 'm');
    subplot(212), plot(res0.attk(:,end), res0.attk(:,3)/glv.deg, 'm');
    subplot(212), plot(iatt(:,end), iatt(:,3)/glv.deg, ':r', 'linewidth',2); legend('KF fine yaw', 'i0 coarse yaw', 'reverse yaw');
    for k=1:2  % reverse & fine iteration
        [att0, iatt] = attrvs(imu, attk(end,1:3)', pos);
        subplot(212), plot(iatt(:,end), iatt(:,3)/glv.deg, ':r', 'linewidth',2);
        phi = [0.1; 0.1; 1]/k*glv.deg;
        [att1, attk] = alignvn(imu, a2qua(att0), pos, phi, imuerr, wvn);  close(clf);
        subplot(211), plot(attk(:,end), attk(:,1:2)/glv.deg, 'linewidth',k+1);
        subplot(212), plot(attk(:,end), attk(:,3)/glv.deg, 'linewidth',k+1);
    end


示例结果如下:
在这里插入图片描述
上图为姿态/方位角收敛过程
在这里插入图片描述
在这里插入图片描述
上述对准表示对准到180s,惯性系粗对准可以得到初始时刻姿态,然后后面利用卡尔曼滤波进行对准
输入的参数为:
imu - IMU data,IMU数据
pos - position,初始位置信息
t1 - inertial-frame align time,惯性系粗对准时间

大方位失准角线性Kalman滤波与EKF滤波初始对准比较

打开例子所在文件demos\test_align_ekf.m,并运行:
在这里插入图片描述
上图为状态估计误差比较

大失准角UKF滤波初始对准

打开例子所在文件demos\test_align_ukf.m,并运行:
在这里插入图片描述
上图为状态估计及其均方误差

经验

1)通常水平失准角估计速度比较快,而方位失准角慢,采用遗忘滤波算法有利于避免状态估计方差阵和增益矩阵的退化,提高方位收敛速度;
2)滤波过程中当失准角降低至比较小时,从大失准角UKF滤波方式转到小失准角Kalman滤波方式能够降低计算量,并且不损失对准精度;
3)对于一般非线性系统,目前还很难从理论上证明UKF滤波的有效性和收敛性,而主要依靠仿真和试验验证。如果在大失准角条件下使用UKF 滤波的主要目的在于迅速辨识粗略失准角的话,在KF滤波模型中就可以不将惯性传感器误差纳入滤波模型,降低维数不仅能能够减小计算量,还有利于减小UKF 滤波发散的机会。

### 回答1: 静基座初始对准程序是一种用于导航、定位和观测的程序。它可以帮助静基座在没有外界参考的情况下确定自身的位置和姿态。 静基座初始对准程序主要有以下几个步骤: 1. 初始化:首先,程序会通过获取静基座当前的位置和姿态信息,进行初始化设置。这可以是通过惯性导航系统或其他传感器提供的数据。 2. 对准方程求解:程序根据静基座的当前位置和姿态信息,通过数学模型和算法,推导出解决静基座初始对准问题的方程组。 3. 迭代求解:程序会使用迭代方法,根据方程组的解,计算出静基座应调整的姿态和位置参数。通过不断迭代求解,最终得到一个满足要求的解。 4. 调整静基座姿态:根据迭代求解得到的结果,程序会通过控制静基座的姿态控制系统,调整静基座的姿态,使其逐渐趋近于期望的目标姿态。 5. 调整静基座位置:在姿态调整完成后,程序会继续根据方程组的解,通过控制静基座的位置控制系统,逐步调整静基座的位置,使其逐渐趋近于期望的目标位置。 6. 完成对准:当静基座的姿态和位置与目标设定值足够接近时,程序认为对准已经完成。此时,静基座可以进行后续的导航、定位和观测任务。 总的来说,静基座初始对准程序通过迭代求解方程组,不断调整静基座的姿态和位置,使其达到期望的目标值,从而实现对准。这个过程需要对数学模型、算法和姿态、位置控制系统有深入的理解和熟练的操作。 ### 回答2: 静基座初始对准程序是一种用于使静基座(Inertial Navigation System,简称INS)在开始运算前对其内部组件进行校准和对准的程序。 首先,在开始进行初始对准之前,需要确保静基座的安装位置稳固且不受外界干扰。接下来,进入初始对准程序的步骤。 1. 零偏校准:首先,需要对静基座进行零偏校准。通过读取静基座内加速度计和陀螺仪的输出值,计算出它们在没有运动时的零偏。这一步骤通常需要静态放置静基座一段时间,等待其稳定下来。 2. 对准加速度计:接下来,进行对准加速度计。通过利用重力加速度的特点,在一个已知姿态的静态环境下,通过对加速度计输出值的变化进行计算,从而估计出静基座的姿态。这一步骤通常需要放置静基座一段时间,直至其输出值稳定。 3. 对准陀螺仪:最后,进行对准陀螺仪。在对准加速度计的基础上,通过读取静基座内陀螺仪的输出值,并将其与已知姿态下的期望值进行比较,进一步校准陀螺仪的姿态估计。这一步骤通常需要将静基座逐渐转动,以在不同姿态下进行校准。 通过以上步骤的初始对准,静基座内的加速度计和陀螺仪将得到较为准确的校准值,从而为后续的姿态估计和导航计算提供可靠的基础。具体的对准参数和校准方法可以根据具体的静基座型号和使用需求进行调整和优化。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十八与她

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值