文章目录
INS的初始对准
INS的初始对准为初始化的一部分
INS初始化
初始位置: 给定(INS没有初始位置确定的能力,例如从GPS )
初始速度: 零(静止状态)或给定
初始姿态: 初始对准(INS有能力自己测资态)
- 粗对准vs. 精对准
- 静止状态vs. 运动状态
- 重要性: 失之毫厘,谬以千里(初始俯仰角会造成一个随时间二次方发散的位置误差)
1.初始姿态其实是参考坐标系(一般为当地水平坐标系)与载体坐标系(b系)的角度关系
2.姿态角定义,实际上是从参考坐标系经过三次旋转转到了载体坐标系
静基座/静态粗对准
1.通过加速度计对重力的感知,可以得到初始俯仰角和横滚角
2.静止不动的三轴陀螺测的是地球自转;地球自转角速度向量的当地水平分量,是帮我们确定出航向角的一个被测向量(因为航向发生改变,水平方向地球自转的投影,在陀螺轴线上的投影,是会发生变化的)
静态粗对准—加速度计调平原理
加速度计调平
利用加速度计测量值确定水平姿态角
1.由上图可知,在理想输出情况下,也就是标灰的一行公式里面,加速度计的x轴输出(分析俯仰角),与俯仰角是成正弦关系的,因此,在得到加速度计测量值ax之后,处以一个当地重力加速度,就可以得到俯仰角的估值了
2.因为实际中,传感器输出一定会有误差,由公式得到最后的传感器实际输出=俯仰角+测量误差/当地重力加速度
静态粗对准—陀螺罗盘
思考
-
加速度计调平的精度取决于什么?
由于被测量的重力特别强,所以很轻松就能达到很高的精度,因此就取决于加速度计的精度,而且很容易达到 -
陀螺罗盘的精度取决于什么?
取决于陀螺输出的平均值的误差;我们希望测量值越大越好,但是地球自转的投影分量是固定的,但是纬度是可以变化的,中低纬度的效果会好一些 -
在静基座对准中,纬度= 30°,东向陀螺零偏= 0.01
°/hr,那么造成的航向误差是多少?
-
如果纬度= 80°呢?
综上可知,纬度对陀螺罗盘的影响是非常大的(实际上就是,被测向量越大,误差就会越小)
上图为影响航向角精度的因素,陀螺零偏和纬度(这里考虑的是陀螺误差里面的一个常值零偏,下面考虑了白噪声ARW) -
如果陀螺的ARW=0.002 deg/sqrt(hr),为了在纬度=45°的地方实现航向对准的标准差小于0.7 mrad,初始对准时间至少应为多长?
先准备一下预备知识:
对静置时段陀螺的输出取均值,以降低白噪声的影响,平均之后陀螺均值的RMS值与静置时长(对准时长Ta)的关系为:
因此得到结果:
对上面的计算公式稍作解释:
1.幅度的平方,也就是RMS的平方,和平均时间成反比,即幅度本身与时间的开方成反比
2.初始对准误差,等于平均值的RMS值或者说是幅度。除以被测信号;平均值的幅度,由公式可知,等于功率谱密度的参数除以平均时间的开方
3.一个毫弧度大概等于0.06°
4.由陀螺白噪声引起的初始对准的航向误差,影响因素有三个:ARW,白噪声的功率谱密度的系数;当地纬度;平均时间
静基座对准的航向角精度取决于?
陀螺(东向轴) 零偏(之所以是东向,因为它分得的角速度在当地水平方向的投影的分量,是和航向角成sin关系的,在0度附近,它的变化比北向的cos更敏感)
纬度(𝜑)
陀螺角度随机游走( ARW)
对准时间
初始对准的影响因素
其实就是思考题中的问题
双矢量定姿原理
静态解析粗对准—双矢量定姿
静置在地面上的IMU,其加速度计测量值是重力加速度向量在b系中的分量,陀螺输出为地球自转角速度向量在b系中的投影。(只是做姿态投影,大小不发生变化)
静态解析粗对准(续)
上述公式中,n系下的值,是我们已知的,直接带入就可以;b系下测量的值,是要实际测的,然后取平均带入即可
上图是实际计算中用到的方式
上图为由姿态矩阵计算姿态角的公式与方法
其它初始对准方法
精对准
当载体姿态有轻微晃动时;
以粗对准作为初始值,利用零速等先验信息通过
Kalman滤波器修正惯导姿态,使精度进一步收
敛,跟上实时变化。
动对准
当载体运动时;
利用GPS等外界辅助信息,以重力、载体速度、
加速度等作为观测向量。