惯导机械编排算法
惯性导航姿态算法
欧拉角(续)
二维平面坐标变换
每次按照一个轴线进行旋转,也就是每次都是一个二维平面坐标变换,旋转顺序为,先绕Z轴(航向角)、再Y轴(俯仰角),最后X轴(横滚角)
上面的二维可以写成三维形式:
用欧拉角表示坐标转换矩阵
由二维形式,按照绕Z轴、Y轴和X轴的顺序分别进行旋转,最后,可以得到从n系到b系的一个投影关系;按照这个矩阵形式得到的是Cbn
,但是我们在惯导算法里面用到最多的是Cnb
,因此需要对Cbn
求逆,但又由于Cbn
为正交阵,因此,它的逆矩阵就等于它的转置
欧拉角法
微分方程
欧拉角法的特点
优点:形象直观;由欧拉角得到的姿态矩阵永远是正交阵。
缺点:当俯仰角为±90度时,方程式出现“奇点”,不能用于
全姿态导航。
欧拉角组不能直接相加来表示转动的叠加,欧拉角不能内插。
注:由于上述缺点,因此我们在姿态更新时不使用,它只用于姿态结果的理解与显示
方向余弦矩阵
1.两个向量的方向余弦等于两个向量点乘(对应位置向量相乘)除以两个向量模的乘积
2.以单位向量i,j,k为基础,就可以表达出空间任意的向量;单位向量(三维向量)的方向就是所在轴的方向,模为1
下图为方便理解,给出向量在一个坐标系中的投影:
3.姿态投影阵就是方向余弦矩阵,就能实现把一个向量从一个坐标系转换到另一个坐标系
上图红框部分,其实就实现了把一个向量从一个坐标系投影到另一个坐标系了
上图我们可以看到,矩阵的红色部分,其实都是两个坐标系对应的单位向量的两两配对,每一个都是两个向量点乘得到的方向余弦(因为模都为1,因此点乘之后就是两向量的方向余弦),一共9个,组成了3×3的方向余弦阵
1.理解方向余弦矩阵中“方向余弦”的含义(坐标轴夹角的余弦)
2.方向余弦矩阵(Direction Cosine Matrix,DCM)又被称为“坐标转换矩阵”, 常用于将矢量的投影从一个坐标系变换到另一坐标系中。
方向余弦矩阵的特性
上图中,从上到下,表示的是,横滚角、俯仰角和航向角