python开发3-mujoco的安装和基本使用

在机器人和人工智能结合的课题中,动力学仿真是一个重要的纽带。动力学仿真的意思,就是整个场景中的物体(包括桌子椅子或者机器人,夹爪),都能模拟物理世界一样表现,撞到了会停,会反弹。而动力学仿真中,gazebo,bullet,mujoco,都是一些做的比较成熟的(也有比如simulink,adams商业软件,但是其实商业软件并不适合linux下面的AI开发,他们都是自己一套体系,移植非常困难,只有linux下面的一些小伙伴可以形成组合拳)

mujoco有C++和PYTHON版本,两者也不是同一个东西(有一些细微区别,比如XML模型文件有的标签C++能认出来,PYTHON版本就不行)

先介绍C++版本,这个可以用来检查你自己写的XML文件是否正确,以及基础的调试

Mujoco

从官网下载新版,不要用2.0的版本了(mujoco-3.2.5-linux-x86_64.tar.gz)

https://github.com/google-deepmind/mujoco/releases

下载之后只需要解压,他这里有一个compile文件,是为了到时候转换得到xml模型格式文件

### Mujoco Python 使用教程与安装指南 #### 1. 安装准备 在开始之前,需确认已具备以下条件: -安装 Anaconda 或 Miniconda 来管理 Python 环境[^2]。 - 推荐使用Python 版本为 3.8 及以上版本。 #### 2. 官方绑定的安装 DeepMind 提供了官方支持的 `mujoco` 包,可通过 Pip 进行安装。执行以下命令完成安装: ```bash pip install mujoco ``` 此命令适用于大多数主流操作系统,并能自动处理依赖项。 #### 3. 配置环境变量 (macOS 用户特别注意) 对于 macOS 用户,在某些情况下可能需要手动配置环境变量来指定 MuJoCo 的路径。例如,如果通过推荐的方式安装MuJoCo,则可设置如下环境变量: ```bash export MUJOCO_PATH=/Applications/MuJoCo.app ``` 随后进入目标目录并运行安装脚本: ```bash cd dist MUJOCO_PATH=/PATH/TO/MUJOCO MUJOCO_PLUGIN_PATH=/PATH/TO/MUJOCO_PLUGIN pip install mujoco-x.y.z.tar.gz ``` 完成后验证安装是否成功: ```bash python -c "import mujoco" ``` 如果没有报错则说明安装成功[^3]。 #### 4. 使用第三方工具增强功能 除了基础的 `mujoco` 包外,还可以考虑安装额外的支持库以提升开发体验。例如,`mujoco-python-viewer` 是一款用于可视化模拟场景的工具包,其安装方法如下: ```bash pip install mujoco-python-viewer ``` 该工具能够帮助开发者更直观地观察物理仿真效果[^1]。 #### 5. 编写简单的测试程序 下面是一个基本的例子展示如何加载 XML 文件并通过 API 调用控制模型: ```python import mujoco from mujoco import viewer # 加载XML文件定义的模型结构 xml_path = 'path/to/model.xml' model = mujoco.MjModel.from_xml_path(xml_path) # 创建数据对象存储动态状态信息 data = mujoco.MjData(model) # 启动图形界面查看器 with viewer.launch_passive(model, data) as v: while not v.is_closed(): # 更新渲染画面 v.sync() # 执行一步物理引擎计算 mujoco.mj_step(model, data) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

筱冉控制

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值