
在大模型落地过程中,性能问题往往比精度问题更棘手:同样的模型,有的团队能做到毫秒级响应,有的却卡在分钟级延迟;有的能在单卡运行,有的却需要多卡集群还频繁OOM。这背后,本质是没找准性能瓶颈。
本文将从关键指标、分析工具、实战代码三个维度,手把手教你定位大模型的性能瓶颈,附带可直接运行的Python工具代码,适用于模型训练和推理全流程分析。
一、大模型性能瓶颈的4大核心维度
在分析性能前,我们需要明确:大模型的性能瓶颈不是单一指标,而是计算、内存、数据流转等多环节的综合结果。核心监控维度包括:
1. 计算效率瓶颈
- GPU/CPU利用率:利用率低于60%往往意味着计算资源没充分利用(除非是IO受限场景)
- 算力浪费:模型并行时的通信开销、算子效率低(如小矩阵乘法)
- 推理延迟:单次生成的token耗时,直接影响用户体验
2. 内存瓶颈
- 峰值内存:推理/训练时的最大内存占用,决定硬件门槛
- <
订阅专栏 解锁全文
830

被折叠的 条评论
为什么被折叠?



