同步更新于github page
Guided Filter点云降噪
Guided Filter一般用来对2D图像进行降噪等处理,实际上,稍作修改后可以对3D点云进行降噪。
从Guided Filter的基本假设出发,可以推导出针对3D数据的处理方法。这里仅考虑引导数据是点云本身的情况。
首先,根据局部线性假设,有
q i = A k p i + b k q_i=A_kp_i+b_k qi=Akpi+bk
其中 q i q_i qi是滤波后输出的三维点, p i p_i pi是当前需要滤波的点(即算法的输入), A k A_k Ak是一个3x3矩阵, b k b_k bk是3x1向量。
我们希望这个局部线性模型,在 p i p_i pi的领域内有最小的重建误差,即
arg min A k , b k ∑ j ∈ N ( i ) ( ∥ A k p j + b k − p j ∥ 2 + ϵ ∥ A k ∥ 2 ) \text{arg}\min_{A_k, b_k}\sum_{j\in N(i)}(\Vert A_kp_j+b_k - p_j\Vert^2+\epsilon\Vert A_k\Vert^2) argAk,bkminj∈N(i)∑(∥Akpj+bk−pj∥2+ϵ∥Ak∥2)
用上式分别对 A k A_k Ak和 b k b_k bk