Guided Filter对三维点云降噪

同步更新于github page

Guided Filter点云降噪

Guided Filter一般用来对2D图像进行降噪等处理,实际上,稍作修改后可以对3D点云进行降噪。

从Guided Filter的基本假设出发,可以推导出针对3D数据的处理方法。这里仅考虑引导数据是点云本身的情况。

首先,根据局部线性假设,有

q i = A k p i + b k q_i=A_kp_i+b_k qi=Akpi+bk

其中 q i q_i qi是滤波后输出的三维点, p i p_i pi是当前需要滤波的点(即算法的输入), A k A_k Ak是一个3x3矩阵, b k b_k bk是3x1向量。

我们希望这个局部线性模型,在 p i p_i pi的领域内有最小的重建误差,即

arg min ⁡ A k , b k ∑ j ∈ N ( i ) ( ∥ A k p j + b k − p j ∥ 2 + ϵ ∥ A k ∥ 2 ) \text{arg}\min_{A_k, b_k}\sum_{j\in N(i)}(\Vert A_kp_j+b_k - p_j\Vert^2+\epsilon\Vert A_k\Vert^2) argAk,bkminjN(i)(Akpj+bkpj2+ϵAk2)

用上式分别对 A k A_k Ak b k b_k bk

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值