马尔可夫不等式 Markov's inequality

If X is any nonnegative integrable random variable and a > 0, then

\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}.
 \mu(\{x\in X:|f(x)|\geq \varepsilon \}) \leq {1\over \varepsilon}\int_X |f|\,d\mu.

In the language of measure theory, Markov's inequality states that if (X, Σ, μ) is a measure spaceƒ is a measurable extended real-valued function, and \varepsilon>0, then

证明

For any event E, let IE be the indicator random variable of E, that is, IE = 1 if E occurs and IE = 0 otherwise.

Using this notation, we have I(X ≥ a) = 1 if the event X ≥ a occurs, and I(X ≥ a) = 0 if X < a. Then, given a > 0,

aI_{(X \geq a)} \leq X\,

which is clear if we consider the two possible values of I(X ≥ a). If X < a, then I(X ≥ a) = 0, and so aI(X ≥ a) = 0 ≤ X. Otherwise, we have X ≥ a, for which I(X ≥ a) = 1 and so aI(X ≥ a) = a ≤ X.

Since \mathbb{E} is a monotonically increasing function, taking expectation of both sides of an inequality cannot reverse it. Therefore

\mathbb{E}(aI_{(X \geq a)}) \leq \mathbb{E}(X).\,

Now, using linearity of expectations, the left side of this inequality is the same as

a\mathbb{E}(I_{(X \geq a)}) = a(1\cdot\mathbb{P}(X \geq a) + 0\cdot\mathbb{P}(X < a)) = a\mathbb{P}(X \geq a).\,

Thus we have

a\mathbb{P}(X \geq a) \leq \mathbb{E}(X)\,

and since a > 0, we can divide both sides by a.


  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值