(10-1)大模型优化算法和技术:常见的大模型优化算法和技术+梯度下降法

"大模型优化算法" 是一个相对较为广泛的概念,指的是用于优化大型模型的一系列算法和技术。在机器学习和深度学习领域,大模型通常指的是参数数量众多、层数深厚的神经网络等复杂模型。这些模型的训练和优化需要考虑到计算和内存资源的限制,以及有效地解决梯度消失、梯度爆炸等问题。在本章的内容中,将详细讲解大模型优化算法和技术的知识,为读者步入本书后面知识的学习打下基础。

10.1  常见的大模型优化算法和技术

在下面的内容中,列出了常见的用于优化大型模型的算法和技术。

  1. 梯度下降法 (Gradient Descent):梯度下降是优化神经网络的基础方法。大模型优化中,常用的变种包括随机梯度下降(SGD)、小批量梯度下降(Mini-batch GD)、动量法、自适应学习率方法(如Adam、Adagrad、RMSProp)等。
  2. 分布式训练 (Distributed Training):将大型模型的训练任务分布到多台机器或设备上,加快训练速度。常见的分布式训练框架包括TensorFlow的分布式策略和PyTorch的分布式包。
  3. 模型并行和数据并行 (Model Parallelism and Data Paralleli
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值