4D向量和4x4矩阵不过是对3D运算的一种方便的记忆而已。
4D齐次空间
4D向量有4个分量,前3个是标准的x,y和z分量,第4个是w,有时称作齐次坐标。
为了理解标准3D坐标是怎样扩展到4D坐标的,让我们先看一下2D中的齐次坐标,它的形式为(x, y, w)。想象在3D中w=1处的标准2D平面,实际的2D点(x, y)用齐次坐标表示为(x, y, 1),对于那些不在w=1平面上的点,则将它们投影到w=1平面上。所以齐次坐标(x, y, w) 映射的实际2D点为(x/w, y/w)。如图9.2所示:
因此,给定一个2D点(x, y),齐次空间中有无数多个点与之对应。所有点的形式都为(kx, ky, k),k≠0。这些点构成一条穿过齐次原点的直线。
当w=0时,除法未定义,因此不存在实际的2D点。然而,可以将2D齐次点(x, y, 0)解释为"位于无穷远的点",它描述了一个方向而不是一个位置。
4D坐标的基本思想相同,实际的3D点被认为是在4D中w=1"平面"上。4D点的形式为(x, y, z, w),将4D点投影到这个"平面"上得到相应的实际3D点(x/w, y/w, z/w)。w=0时4D点表示"无限远点",它描述了一个方向而不是一个位置