Excel中NORMINV函数的使用【转载】

1 原理

文中案例参考了Courtney K. Taylor的文章《How to Use the NORM.INV Function in Excel》。

在使用Excel统计概率的时候经常需要用到NORMINV函数功能。比如以x表示一个呈正态分布的随机变量,可能会被问到这样一个问题,x的数值等于多少才能在其整个概率分布中位于最低的10%?

为回答这个问题,可能需要以下三步才能得出答案:

  1. 第一步:用标准正态分布表找到概率分布中最低的10%所对应的标准分数Z-score
  2. 第二步: 用标准分数Z-score的计算公式求出x的值,Z-score的计算公式为z=(x- μ)/σ,将该公式略作调整:x= μ + zσ,其中μ是概率分布的均值,σ是概率分布的标准差;
  3. 第三步:将各要素z、μ、σ带入公式,得出结果x

2 使用

但是在Excel中只需使用NORMINV函数即可得出结果。按照Excel的定义,NORMINV返回指定平均值和标准偏差的正态累积分布函数的反函数,其语法为NORMINV(probability,mean,standard_dev),其中Probability 为正态分布的概率值,Mean为分布的算术平均值,Standard_dev 为分布的标准偏差

  1. 正态分布的概率值为累积的概率分布值,对应的是概率分布曲线的左侧
  2. 分布的算术平均值处于概率分布的中心位置上;
  3. 分布的标准偏差反映的是概率分布的离散程度。

3 示例

假设一个样本人群的智商测定值呈正态分布,均值为100,标准差为15。请回答以下三个问题:

  1. 所有智商值中最低的10%的数值范围?
  2. 最高的1%智商值的数值范围?
  3. 中间的50%智商值的数值范围?

解题:

  1. 在Excel中输入NORMINV(10%,100,15),结果约等于80.78,该结果意味着小于等于80.78的智商值在全部智商值中为最低的10%;
    5.
  2. 这个问题稍有点难。根据定义,NORMINV函数的计算结果体现的是概率分布曲线左侧的分布情况,如果想了解概率分布中最高部分的情况,需要看概率分布曲线右侧的分布情况。分布曲线中最高的1%所对应的是后面的99%,因此在Excel中输入NORMINV(99%,100,15),结果约等于134.90,该结果意味着大于等于134.90的智商值在全部智商值中属于最高的1%;
    在这里插入图片描述
  3. 问题三的难度更大一些。要知道中间的50%概率分布意味着要排除掉顶部25%和底部25%的概率分布情况,对于底部25%,需要在Excel中输入NORMINV(25%,100,15),结果等于89.88;
    在这里插入图片描述
    对于顶部25%,需要在Excel中输入NORMINV(75%,100,15),结果等于110.12;
    在这里插入图片描述
    问题三的答案是:如果89.88<智商值<110.12,在所有智商测定值中,其概率分布处于中间的50%。

如果只是计算标准正态分布的情况,那么使用NORMSINV返回标准正态累积分布函数的反函数即可。该函数计算的是概率分布均值为0、标准差为1的概率分布情况。其语法为NORMSINV,内为正态分布的概率值。

只有在概率分布均值为0、标准差为1的情况下,NORMINV函数和NORMSINV函数的计算结果才相等:

NORMINV(正态分布的概率值,0,1)= NORMSINV(正态分布的概率值)

比如正态分布的概率=10%,则

NORMINV(10%,0,1) = NORMSINV(10%)=-1.2816


以上内容来自于:

### 回答1: norminv函数是MATLAB中的一个统计函数,用于计算标准正态分布的反函数值。其语法格式为: y = norminv(p, mu, sigma) 其中,p为概率值,mu为均值,sigma为标准差。函数返回值y为对应于概率p的标准正态分布的反函数值。 例如,若要计算标准正态分布中概率为.95的反函数值,则可以使用以下代码: y = norminv(.95, , 1) 其中,表示标准正态分布的均值,1表示标准差。函数返回值y为1.6449。 ### 回答2: norminv函数是MATLAB中的一种函数,在统计分析和概率计算方面具有很强的应用能力。它的功能是将正态分布的累积概率值转化为对应的分位数或者标准差,这个转化过程是基于正态分布的累积分布函数进行的。使用norminv函数可以方便地计算出正态分布中某一概率所对应的数值,或者是给定均值和标准差时,从这个分布中随机抽取一个数值。 norminv函数的语法格式为: x = norminv(p,mu,sigma) 其中,p表示输入的累积概率值,必须是0到1之间的数字;mu表示均值,sigma表示标准差,它们都是正实数。x表示计算出来的相应数值。 norminv函数的返回值是对应的分位数或者标准差。当输入的概率为0.5(即分布的中位数)时,norminv返回的数值为均值mu。如果要计算一组概率对应的分位数或者标准差,可以使用函数数组的形式进行计算。函数数组是指在一个数组中对相同的函数进行多次运算,例如: x = norminv([0.1,0.3,0.5,0.7,0.9],100,15) 这个语句将会计算出正态分布中累积概率值为0.1、0.3、0.5、0.7和0.9时对应的数值。 可以在MATLAB命令窗口中输入“help norminv”查找更多有关norminv函数用法的说明和示例。 ### 回答3: norminv函数是MATLAB中一个非常有用的函数,它用于将正态分布累积函数(CDF)的值转换为它们对应的分布点。这个函数的基本形式为P=norminv(X),其中P是正态分布函数的分布点,X是对应的累积分布函数的值。 可以使用norminv函数来计算任意标准正态分布(即均值为零、方差为1)或单个正态分布的分布点。函数的输入参数包括: - X: 要计算它的分布点的累积分布函数的值。该值必须是数值向量或数值矩阵。 - MU: 分布的均值(可选)。这是一个实数或数组,用于指定分布的均值。默认值是0。 - SIGMA: 分布的标准差(可选)。这是一个正实数或数组,用于指定分布的标准差。默认值是1。 如果X中的值不是累积分布函数的值,则必须先将它们转换为累积分布函数的值。可以使用MATLAB中的normcdf函数来完成这项任务。因此,如果先使用normcdf计算累积分布函数的值,然后使用norminv来计算分布点,则可以得到起始分布的值。这个过程可以表示为: P = normcdf(X, MU, SIGMA); X = norminv(P, MU, SIGMA); 它的输出变成P变量,代表输入矩阵/向量对应下分位数。比如两个标准差的范围内,有97.72%的概率,所以P=0.9772,那么使用norminv(0.9772, 0, 1)可以求得相应的分布点x的值,它在正态分布上的位置刚好在两个标准差之内了。 norminv函数的常用示例包括: - 求解正态分布的上分位点或下分位点,即将累积概率转换为分布点。 - 进行正态和半正态推断。 - 在正态分布中创建随机数据。 总之,norminv函数在MATLAB中非常有用,可用于许多不同的情况,包括数据分析和模拟等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值