python中pandas的使用方法

import numpy as np
import pandas as pd
datas = pd.date_range('20140729', periods=6)
# 先创建一个时间索引,所谓的索引(index)就是每一行数据的id,可以标识每一行的唯一值
print datas
# 为了快速入门,我们看一下如何创建一个6X4的数据:randn函数用于创建随机数,参数表示行数和列数,dates是上一步创建的索引列
df = pd.DataFrame(np.random.randn(6, 4), index=datas, columns=list('ABCD'))
print df
# 我们还可以使用字典来创建数据框,例如创建一个列名为A的数据框,索引是自动创建的整数
df2 = pd.DataFrame({'A': np.random.randn(6), })
print df2
# 这又是一个字典创建DataFrame的例子
df2 = pd.DataFrame({'A': pd.Timestamp('20140729'), 'B': pd.Series(1), })
print df2
# 假如字典内的数据长度不同,以最长的数据为准,比如B列有4行:
df2 = pd.DataFrame({'A': pd.Timestamp('20140729'), 'B': pd.Series(1, index=list(range(4))), })
print df2
# 可以使用dtypes来查看各行的数据格式
print df2.dtypes
# 接着看一下如何查看数据框中的数据,看一下所有的数据
print df
# 使用head查看前几行数据(默认是前5行),不过你可以指定前几行
print df.head()
# 查看前三行数据
print df.head(3)
# 使用tail查看后2行数据
print df.tail(2)
# 查看数据框的索引
print df.index
# 查看列名用columns
print df.columns
# 查看数据值,用values
print df.values
# 查看描述性统计,用describe
print df.describe()
# 使用type看一下输出的描述性统计是什么样的数据类型——DataFrame数据
print type(df.describe())
# 使用T来转置数据,也就是行列转换
print df.T
# 对数据进行排序,用到了sort,参数可以指定根据哪一列数据进行排序。
print df.sort(columns='C')

pandas删除缺失数据(pd.dropna()方法)

 python进行数据处理——pandas的drop函数


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值