直线一级倒立摆数学建模与控制仿真

学习目标:

1.推导直线型一级倒立摆的数学建模公式,得到状态空间表达式和传递函数,并分析系统的稳定性
2.采用控制算法将系统从不稳定调整到稳定状态,并用matlab和simulink仿真实现


学习内容:

1.建立直线型一级倒立摆的数学模型

(参考(完整版)直线一级倒立摆建模 - 百度文库 https://wenku.baidu.com/view/ca36bbba152ded630b1c59eef8c75fbfc67d9413.html)

倒立摆系统的控制问题一直是控制领域中的一个经典问题,控制的目标是通过在小车底部施加一个力u(控制量),使小车停留在预定的位置,且不超过已预先设定好的垂直偏离角度范围。一级倒立摆系统是一个不稳定的系统,需要建立其数学模型并采用控制算法调控到稳定状态。因为其为非线性问题,处理起来较为困难,因此计算过程中需要将其线性化处理。

基本参数:
小车质量M;摆杆质量m;杆长2L;转角 θ \theta θ;小车与地面之间的摩擦系数 μ \mu μ;重力加速度 g g g
在研究过程中,应忽略空气摩擦等,而后可将倒立摆系统进行抽象化,认为其由小车和匀质刚性杆两部分组成并对这两部分进行如图所示的受力分析:
在这里插入图片描述

1.1.牛顿第二定理

小车X方向: F − F x − f = M x ¨ (1) F-Fx-f=M\ddot{x} \tag{1} FFxf=Mx¨(1)
摆杆X方向: F x = m d 2 d t 2 ( x − L s i n θ ) = m d d t ( x ˙ − L c o s θ θ ˙ ) = m x ¨ + m L s i n θ θ ˙ 2 − m L c o s θ θ ¨ (2) Fx=m\frac{\mathrm{d^2} }{\mathrm{d} t^2}(x-Lsin \theta ) = m\frac{\mathrm{d} }{\mathrm{d} t}(\dot{x}-Lcos \theta\dot{\theta}) =m\ddot{x}+mLsin \theta{\dot{\theta}}^2-mLcos \theta\ddot{\theta} \tag{2} Fx=mdt2d2(xLsinθ)=mdtd(x˙Lcosθθ˙)=mx¨+mLsinθθ˙2mLcosθθ¨(2)

摆杆Y方向: m g − F y = m d 2 d t 2 ( L c o s θ ) = m d d t ( − L s i n θ θ ˙ ) = − m L c o s θ θ ˙ 2 − m L s i n θ θ ¨ (3) mg-Fy=m\frac{\mathrm{d^2} }{\mathrm{d} t^2}(Lcos \theta ) =m\frac{\mathrm{d} }{\mathrm{d} t}(-Lsin \theta\dot{\theta}) =-mLcos \theta{\dot{\theta}}^2-mLsin \theta\ddot{\theta} \tag{3} mgFy=mdt2d2(Lcosθ)=mdtd(Lsinθθ˙)=mLcosθθ˙2mLsinθθ¨(3)

摆杆力矩平衡: I θ ¨ = F y L s i n θ + F x L c o s θ (4) I\ddot{\theta}=FyLsin\theta +FxLcos\theta \tag{4} Iθ¨=FyLsinθ+FxLcosθ(4)

由于控制的目的是保持倒立摆直立,此处假设摆杆转角较小,则可以得到如下假设 s i n θ = θ sin\theta =\theta sinθ=θ, c o s θ = 1 cos\theta =1 cosθ=1

式(2)(3)(4)变为
F x = m x ¨ + m L θ θ ˙ 2 − m L θ ¨ F y = m g + m L θ ˙ 2 + m L θ θ ¨ I θ ¨ = F x L + F y L θ \begin{matrix} Fx=m\ddot{x}+mL\theta{\dot{\theta}}^2-mL\ddot{\theta}\\ Fy=mg+mL{\dot{\theta}}^2+mL\theta\ddot{\theta}\\ I\ddot{\theta}=FxL+FyL\theta\end{matrix} Fx=mx¨+mLθθ˙2mLθ¨Fy=mg+mLθ˙2+mLθθ¨Iθ¨=FxL+FyLθ

以上方程都是非线性方程,为求得解析解,需做线性化处理,有 θ 2 = 0 、 θ ˙ = 0 、 θ ˙ 2 = 0 {\theta}^2=0、\dot{\theta}=0、{\dot{\theta}}^2=0 θ2=0θ˙=0θ˙2=0。设置摩擦力为 f = μ x ˙ f=\mu \dot{x} f=μx˙。设置输入控制量为u,则系统的平衡控制方程为
(2)带入(1),(2)(3)带入(4)
{ ( M + m ) x ¨ + μ x ˙ − m L θ ¨ = u ( I + m L 2 ) θ ¨ − m L x ¨ − m g L θ = 0 (5) \left\{\begin{matrix} (M+m)\ddot{x}+\mu\dot{x} -mL\ddot{\theta}=u \\ (I+mL^2)\ddot{\theta}-mL\ddot{x}-mgL\theta=0 \end{matrix}\right. \tag{5} { (M+m)x¨+μx˙mLθ¨=u(I+mL2)θ¨mLx¨mgLθ=0(5)

θ ¨ = − μ m L ( M + m ) I + M m L 2 x ˙ + ( M + m ) m g L ( M + m ) I + M m L 2 θ + m L ( M + m ) I + M m L 2 u x ¨ = − μ ( I + m L 2 ) ( M + m ) I + M m L 2 x ˙ + m 2 g L 2 ( M + m ) I + M m L 2 θ + I + m L 2 ( M + m ) I + M m L 2 u (6) \begin{matrix} \ddot{\theta}=-\frac{\mu mL}{(M+m)I+MmL^2}\dot x+\frac{(M+m)mgL}{(M+m)I+MmL^2}\theta+\frac{mL}{(M+m)I+MmL^2}u \\ \ddot{x}=-\frac{\mu (I+mL^2)}{(M+m)I+MmL^2}\dot x+\frac{m^2gL^2}{(M+m)I+MmL^2}\theta+\frac{I+mL^2}{(M+m)I+MmL^2}u \end{matrix}\tag{6} θ¨=(M+m)I+MmL2μmLx˙+(M+m)I+MmL2(M+m)mgLθ+(M+m)I+MmL2mLux¨=(M+m)I+MmL2μ(I+mL2)x˙+(M+m)I+MmL2m2gL2θ+(M+m)I+MmL2I+mL2u(6)

状态方程:
{ X ˙ = A X + B U Y = C X + D U \left\{\begin{matrix} \dot{X}=AX+BU \\ Y=CX+DU \end{matrix}\right. { X˙=AX+BUY=CX+DU

X = [ x x ˙ θ θ ˙ ] X=\left [ \begin{matrix} x & \dot x & \theta & \dot{\theta} \end{matrix} \right ] X=[xx˙θθ˙]

状态空间表达式:
[ x ˙ x ¨ θ ˙ θ ¨ ] = [ 0 1 0 0 0 − μ ( I + m L 2 ) ( M + m ) I + M m L 2 m 2 g L 2 ( M + m ) I + M m L 2 0 0 0 0 1 0 − μ m L ( M + m ) I + M m L 2 ( M + m ) m g L ( M + m ) I + M m L 2 0 ] . [ x x ˙ θ θ ˙ ] + [ 0 I + m L 2 ( M + m ) I + M m L 2 0 m L ( M + m ) I + M m L 2 ] . u (7) \left [ \begin{matrix} \dot x \\ \ddot x \\ \dot{ \theta} \\ \ddot{\theta} \end{matrix} \right ] = \left [ \begin{matrix} 0 & 1 & 0 & 0 \\ 0 & -\frac{\mu (I+mL^2)}{(M+m)I+MmL^2} & \frac{m^2gL^2}{(M+m)I+MmL^2} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -\frac{\mu mL}{(M+m)I+MmL^2} & \frac{(M+m)mgL}{(M+m)I+MmL^2} & 0 \end{matrix} \right ] . \left [ \begin{matrix} x \\ \dot x \\ \theta \\ \dot{\theta} \end{matrix} \right ] + \left [ \begin{matrix} 0 \\ \frac{I+mL^2}{(M+m)I+MmL^2} \\ 0 \\ \frac{mL}{(M+m)I+MmL^2} \end{matrix} \right ] .u \tag{7} x˙x¨θ˙θ¨=00001(M+m)I+MmL2μ(I+mL2)0(M+m)I+MmL2μmL0(M+m)I+MmL2m2gL20(M+m)I+MmL2(M+m)mgL0010.xx˙θθ˙+0(M+m)I+MmL2I+mL20(M+m)I+MmL2mL.u(7)

Y = [ x θ ] = [ 1 0 0 0 0 0 1 0 ] . [ x x ˙ θ θ ˙ ] + [ 0 0 ] . u (8) Y= \left [ \begin{matrix} x \\ { \theta} \end{matrix} \right ] = \left [ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{matrix} \right ] . \left [ \begin{matrix} x \\ \dot x \\ \theta \\ \dot{\theta} \end{matrix} \right ] + \left [ \begin{matrix} 0 \\ 0 \end{matrix} \right ] .u \tag{8} Y=[xθ]=[10000100].xx˙θθ˙+[00].u(8)
式中, x x x是小车的位移; x ˙ \dot x x˙是小车的速度; θ \theta θ是摆杆的角度; θ ˙ \dot \theta θ˙是摆杆的角速度;u是输入;Y是输出。

1.2.拉格朗日法

从能量的角度出发建立系统的运动方程,即系统的动能、势能以及外力。定义第二类拉格朗日方程为:
L = T − V d d t ∂ L ∂ q ˙ i − ∂ L ∂ q i = W i ( i = 1 , . . . , k ) (9) \begin{matrix} L=T-V\\ \frac{\rm d}{\rm d t}\frac{\partial L}{\partial \dot q_i}-\frac{\partial L}{\partial q_i}=W_i (i=1,...,k) \end{matrix} \tag{9} L=TVdtdq˙iLqiL=Wi(i=1,...,k)(9)

其中, T T T是系统的动能, V V V是系统的势能, W i W_i Wi对应于广义坐标 q i q_i qi的非有势力的广义力。(有势力是指作用在物体的力所做功仅与力作用点的起始位置和终了位置有关,而与其作用点经过的路径无关的力。)

动能:
T c = 1 2 M x ˙ 2 T b = 1 2 I θ ˙ 2 + 1 2 m { [ d d t

  • 27
    点赞
  • 215
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
基于模糊控制和PID控制一阶倒立摆系统建模仿真是杨治明在控制理论领域的研究工作。他通过对一阶倒立摆系统建模,设计了基于模糊控制和PID控制控制器,并通过仿真实验进行验证。 在建模过程中,杨治明考虑了一阶倒立摆系统的物理特性,如质量、摩擦和重力等因素。通过对系统的动力学方程进行推导和分析,他得到了描述一阶倒立摆系统行为的数学模型,用于后续的控制器设计和仿真实验。 基于模糊控制和PID控制控制器设计是杨治明的重点研究方向。他首先通过模糊控制方法来设计控制器,模糊控制器能够基于输入和输出的模糊语言规则进行推理和控制决策,从而实现对倒立摆系统的稳定控制。 接着,杨治明结合PID控制方法对模糊控制器进行改进。PID控制器通过测量误差的比例、积分和微分来计算控制输出,对系统进行调节和稳定。通过将PID控制器与模糊控制器相结合,杨治明取得了更好的控制性能和鲁棒性。 最后,杨治明使用仿真实验验证了基于模糊控制和PID控制一阶倒立摆系统控制效果。通过在仿真平台上对系统进行模拟和调试,他得到了倒立摆系统的响应曲线和控制性能指标,验证了该控制方案的有效性和优越性。 综上所述,基于模糊控制和PID控制一阶倒立摆系统建模仿真是杨治明在控制理论领域的研究成果,他通过对系统建模控制器的设计,以及仿真实验的验证,取得了一定的理论和实践成果。这对于倒立摆系统控制与应用具有重要的参考价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值