直线型一阶倒立摆2---建模

三、直线型一阶倒立摆模型建立

    一级倒立摆系统是一个不稳定的系统,需要对其进行机理建模。 在研究过程中,应忽略空气摩擦、等,而后可将倒立摆系统进行抽象化,认为其由小车和匀质刚性杆两部分组成并对这两部分进行如图所示的受力分析:

 

其中为小车的质量和摆杆的质量;b、Fx分别为小车的摩擦系数、施加在小车上的作用力和小车的位置[8];I和 分别为摆杆的惯量和摆杆转动轴心到质心的长度; 和  分别为摆杆与竖直向上方向和竖直向下方向的夹角;N P 分别为摆杆作用力的水平与竖直分量。

小车水平方向的合力: 

                                                      M\frac{\mathrm{d^{2}x} }{\mathrm{d} t^{2}}=F-B\frac{\mathrm{dx} }{\mathrm{d} t}-N        (1)     

 摆杆水平方向的合力:  

                                                        N=m\frac{\mathrm{d^{2} (x-lsin\theta )} }{\mathrm{d} t^{2}}             (2)      

摆杆水平方向运动方程:

                                                        (M+m)x^{''}+bx^{'}+ml\theta ^{''}cos\theta -ml\theta ^{'}sin\theta =F        (3)

摆杆力矩平衡方程:

                                                           -PIsin\theta -Nlsin\theta =I\theta ^{''}           (4)

摆杆在竖直方向的合力:

                                                                    P=mg-ml\theta ^{''}sin\theta -ml\theta ^{'}^2cos\theta         (5)

可得到摆杆在竖直方向的运动方程:

                                                                     (1+ml^{2})\theta ^{''}+mglsin\theta =-mlx^{''}cos\theta         (6)

摆杆竖直方向运动方程:

                                                                        I+Ml^{''}\phi -mgl\phi =mlx             (7)

将作用力 F 用 u代替,同时进行线性化,即得到:     

                                                                         (I+ml^{2})\phi ^{''}-mgl\phi =mlx^{''}      (8)

                                                                          (M+m)x^{^{''}}+bx^{'}-ml\phi ^{''}=u    (9)                  

其中\theta =\pi +\phi\phi为小角度。

质量均匀分布的摆杆,对于式(8)有                       I=\frac{1}{3}ml^{2}                                   (11)

由式(8)、(11)得到:                                               (\frac{4}{3}ml^{2})\phi ^{''}-mgl\phi=mlx^{''}       (12)

对质量均匀摆杆,取X=[\begin{matrix} x &x^{'} &\phi & \phi ^{'} \end{matrix}],u^{'}=x^{''}可得到线性一阶直线倒立摆状态空间描述:

                                                                             \begin{bmatrix} x^{'}\\ x^{''}\\ \phi ^{'}\\ \phi ^{''} \end{bmatrix}=\begin{bmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0& 0& 0 &1 \\ 0& 0 &\frac{3g}{4l} & 0 \end{bmatrix} \begin{bmatrix} x\\ x^{'}\\ \phi \\ \phi ^{'} \end{bmatrix}+\begin{bmatrix} 0\\ 1\\ 0\\ \frac{3}{4l} \end{bmatrix}u^{'}         (13)

                                                                             y=\begin{bmatrix} x\\ \phi \end{bmatrix}=\begin{bmatrix} 1 & 0& 0& 0\\ 0& 0& 1& 0 \end{bmatrix}\begin{bmatrix} x\\ x^{'}\\ \phi \\ \phi ^{'} \end{bmatrix}                         (14)

    对系统进行可控性分析,由控制矩阵Qc=[B  AB  A^{2}B  A^{3}B]=\begin{bmatrix} 0 &1 &0 &0 \\ 1&0 &0 &0 \\ 0 & \frac{3}{4l} &0 &\frac{9g}{16l^{2}} \\ \frac{3}{4l} &0 & \frac{9g}{16l^{2}} &0 \end{bmatrix},用matlab计算可知,Qc的秩为4,系统可控。系统可进行状态变量的极点配置。

   对系统进行可观测性分析,由观测矩阵Qo=[C  CA  CA^{2}  CA^{3}],用matlab计算可知,Qo的秩为4,系统可观测。系统可设计观测器,并且观测器可控。

倒立摆视频汇总:自动学习起摆和稳定一阶倒立摆

                          VREP仿真之直线型一阶倒立摆:起摆与稳摆 

最后附上Alan V. Oppenheim/奥本海姆对倒立摆的讲解:反馈举例-倒立摆

其它博文链接:直线型一阶倒立摆1---概念篇







                         直线型一阶倒立摆2---建模




                         直线型一阶倒立摆3---控制器设计

                         直线型一阶倒立摆4---能量起摆

                         直线型一阶倒立摆5---硬件平台搭建

                         直线型一阶倒立摆6---软件设计

                            直线型一阶倒立摆7---总结

有需要直线型一阶倒立摆的VREP仿真文件:可点击

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值