oCPC实践录 | 简单有效,oCPC逆系统控制

​在oCPC实践录 | 好难理解的oCPC成本控制算法中分析了控制策略直接设计为k=cpa_ratio是错误的。其中提到一句,是有一个k值是正确的,使得cpa_ratio=1,但这个k怎么计算呢?

做惯模型的人可能会有一个想法,既然假设系统是线性,那么是不是可以构建模型cpa_ratio = alpha * k + beta, 通过采样获得样本计算获得alpha和beta, 然后当新cpa_ratio过来时,是不是可以反解出k值呢?也就是说可以找正确的cpa_ratio与k值的关系。

这个想法思路看起来没有问题,只是忽略了一个很重要的事情:样本。如果说样本正确,那么学出来的参数肯定没有问题。但是如果样本就是错误的,参数就有问题了。而正确的样本来自哪里呢?来自正确的控制策略。因此来说,这个思路有点本末倒置。(当然如果有人能证明该算法可收敛,也没有问题,但是收敛速度怎么样呢?)

类似的,采样周期重合或者移动窗统计CPA,按照k=cpa_ratio策略也存在不收敛的情况。我们重新思考ocpc_bid = given_cpa * pcvr * k,能否找到一个算法求的k值满足成本要求呢?

我们从线性系统控制理论出发,看看能不能将被控系统准确的表达出来,然后再设计控制器呢?被控系统是广告系统,输入是bid,输出是cpa,即:

cpa = f(bid…)

如果我们能获取f对bid的反函数,即bid = f’(cpa…), 那么我们就可以根据given_cpa反解出ocpc_bid。这个思路就是控制理论中的逆系统控制,再向下延伸有内模控制等。

接下来我们推导二价拍卖下广告系统的数学模型,一段时间内广告的

cpa = charge / cv

= (charge / click) * (click /cv)

= acp / cvr

= (acb * jfb) / (pcvr / pcoc)

其中charge为消费,cv为转化数,click为点击数,acp为平均点击消费,cvr为真实转化率,acb为平均点击出价,jfb为平均点击消费与平均点击出价之比,pcvr为预测转化率,pcoc为预测转化率与真实转化率之比。通过上式,我们推导出

cpa = f(bid…) = (acb * jfb) / (pcvr / pcoc)

那么对bid的反函数为 acb = cpa * pcvr / jfb / pcoc,也就是说如果在该段时间内,当acb=given_cpa * pcvr / jfb / pcoc时,广告系统的真实输出real_cpa = given_cpa。

在下一个时刻,我们假设广告转化与预测稳定(pcoc稳定)和广告系统稳定(jfb稳定),那么ocpc的出价为

ocpc_bid=given_cpa * pcvr / jfb / pcoc

即矫正参数

k= 1 / (jfb * pcoc)

时,可保证real_cpa=given_cpa,该控制策略就是逆系统控制。

控制策略 k= 1 / (jfb * pcoc)十分简单,只用统计过去一段时间的jfb和pcoc即可完成检索级别的成本控制,如果能够提高这两个参数计算的时效性,成本控制效果会很好,对于oCPC产品初期,使用这个控制策略已经完全足够了。

这是基于模型的控制策略,如果建模对象发生变化,但模型没有更新,系统控制效果会变差,甚至失控。在oCPC逆系统控制中有三个重要假设:(1)模型是线性的(2)广告的pcoc稳定,也就是说模型能够识别广告转化率的变化(3)广告的计费比要稳定。但这些假设不一定完全符合,导致广告超成本和成本不足的情况不能挽回。

可以看出基于模型的控制,系统以最快的速度跟上given_cpa,适用于given_cpa频繁变化的广告系统,简单有效,追求检索级别的成本控制。但模型存在较为严格的假设,导致策略不会去考虑系统过去的成本情况,导致平台损失,参数的时效性和置信度需要做出平衡,保证效果。

基于模型控制的算法有很多,暂时不做深入研究。下篇文章我们来介绍无模型控制算法,也是最经典的控制算法PID算法,敬请关注。

精彩内容预告:

随你千变万化,oCPC PID控制

最好最快的方法就是抄

转化率模型与校准

oCPC非线性调价

oCPC自动补款与赔偿

oCPC扩量策略

深度oCPC策略

强化学习与oCPC

往期内容:

往期内容:

  1. oCPC实践录 | 好难理解的oCPC成本控制算法
  2. oCPC实践录 | 摸石头过河,oCPC先跑起来再说
  3. oCPC实践录 | 谁会阻止你做oCPC?
  4. oCPC实践录 | oCPC产品设计与出价原理(1)
  5. oCPC实践录 | 成本优化策略之eCPC(3)
  6. oCPC实践录 | 成本优化策略之eCPC(2)
  7. oCPC实践录 | 成本优化策略之eCPC(1)
  8. oCPC实践录 | 成本优化策略之CVR门槛(2)
  9. oCPC实践录 | 成本优化策略之CVR门槛(1)
  10. oCPC实践录 | 糟糕,广告主成本超了!
  11. oCPC实践录 | 没有oCPC怎么做成本优化?
  12. oCPC实践录 | 重新理解oCPC-出价方式(2)
  13. oCPC实践录 | 重新理解oCPC之出价方式(1)
  14. oCPC实践录 | 重新理解oCPC之量化流量价值
  15. oCPC实践录 | 我还是做oCPC吧!
  16. oCPC实践录 | 开篇语

在AITBOOK联系我!
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:Age of Ai 设计师:meimeiellie 返回首页
评论 2

打赏作者

广告与算法

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值