我们给出以下的分类标准: 1. 解释方法类型 模型无关方法:这些方法不依赖于特定的模型架构或训练数据,使其通用性强,适用于各种模型。它们通过分析输入特征与模型输出之间的关系来工作,提供可在不同模型之间泛化的解释。模型无关方法的示例包括: 局部可解释模型无关解释 (LIME):LIME 会在特定的输入实例周围生成简化的局部模型,提供模型如何为该特定输入生成预测的解释。