CVPR 2023 精选论文学习笔记:PIP-Net Patch-Based Intuitive Prototypes for Interpretable Image Classification

本文介绍了PIP-Net,一种基于自监督学习的模型无关图像分类解释方法,通过局部补丁扰动分析提供单个预测的解释。PIP-Net使用直观的原型发现,生成稀疏评分表,帮助理解模型决策过程。
摘要由CSDN通过智能技术生成

我们给出以下的分类标准:

1. 解释方法类型

  • 模型无关方法:这些方法不依赖于特定的模型架构或训练数据,使其通用性强,适用于各种模型。它们通过分析输入特征与模型输出之间的关系来工作,提供可在不同模型之间泛化的解释。模型无关方法的示例包括:
    • 局部可解释模型无关解释 (LIME)LIME 会在特定的输入实例周围生成简化的局部模型,提供模型如何为该特定输入生成预测的解释。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值