信号与系统(3.1)- RLC 串联电路的零输入响应

信号与系统(3.1)- RLC 串联电路的零输入响应

RLC电路也称为二阶电路,即由二阶微分方程进行描述的电路。RLC电路是最基本的电路之一,通过对RLC电路的理解,可以为之后的学习,如振荡器,滤波器等提供参考和学习思路上的引导。因为RLC电路不属于信号与系统这个学科的重点研究范围,所以将这一部分内容设置为线性系统时域分析的番外篇,3.1讲述RLC串联电路的相关内容,3.2讲述RLC并联电路的相关内容。

仿真将用到MultisimLive进行仿真,以验证计算结果的正确性,MultisimLive是National Instruments(NI)公司研发的一款在线仿真工具。相对桌面版的Multisim,在线版的功能较少,并且免费版仅支持瞬态分析,交流扫描和直流工作点分析。对于结果的计算将使用Desmos在线画图工具进行画图,用以对比仿真结果。

1. 如何构建RLC串联电路的微分方程?

RLC串联电路如下图所示:

因为是零输入相应,因此将电压源去除,由KVL可知:
u l + u c + u r = 0 u_l+u_c+u_r=0 ul+uc+ur=0
其中 u l u_l ul u c u_c uc u r u_r ur分别是电感、电容和电阻两端的电压, i ( t ) i(t) i(t)表示串联电路中的电流。

将动态元件的伏安关系:
i ( t ) = C d d t u c ( t ) ,    i ( t ) = 1 L ∫ − ∞ t u l d t ,    u c = 1 C ∫ − ∞ t i ( t ) d t ,    u l = L d d t i ( t ) i(t)=C\frac{d}{dt}u_c(t),\space\space i(t)=\frac{1}{L}\int_{-\infty}^tu_ldt,\space \space u_c=\frac{1}{C}\int_{-\infty}^ti(t)dt,\space\space u_l=L\frac{d}{dt}i(t) i(t)=Cdtduc(t),  i(t)=L1tuldt,  uc=C1ti(t)dt,  ul=Ldtdi(t)
带入KVL方程 u l + u c + u r = 0 u_l+u_c+u_r=0 ul+uc+ur=0即可得此RLC串联电路的二阶微分方程:
L C d 2 d t 2 u c ( t ) + R C d d t u c ( t ) + u c = 0 LC\frac{d^2}{dt^2}u_c(t)+RC\frac{d}{dt}u_c(t)+u_c = 0 LCdt2d2uc(t)+RCdtduc(t)+uc=0

2. 如何求RLC串联电路的零输入响应?

零输入响应的微分方程为:
L C d 2 d t 2 u c ( t ) + R C d d t u c ( t ) + u c = 0 LC\frac{d^2}{dt^2}u_c(t)+RC\frac{d}{dt}u_c(t)+u_c = 0 LCdt2d2uc(t)+RCdtduc(t)+uc=0
进而的到其特征方程:
L C λ 2 + R C λ + 1 = 0 LC\lambda^2 +RC\lambda + 1 = 0 LCλ2+RCλ+1=0
解得特征根为:
λ 1 = − R 2 L − ( R C ) 2 − 4 L C 2 L C ,    λ 2 = − R 2 L + ( R C ) 2 − 4 L C 2 L C \lambda_1=-\frac{R}{2L}-\frac{\sqrt{(RC)^2-4LC}}{2LC}, \space \space \lambda_2=-\frac{R}{2L}+\frac{\sqrt{(RC)^2-4LC}}{2LC} λ1=2LR2LC(RC)24LC ,  λ2=2LR+2LC(RC)24LC
可以看出,零输入响应的待定系数形式取决于 [ ( R C ) 2 − 4 L C ] [(RC)^2-4LC] [(RC)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值