Large Language Models in Finance: A Survey

828 篇文章

已下架不支持订阅

本文探讨了大型语言模型(LLM)在金融领域的应用,包括现有解决方案、决策框架,以及面临的挑战。研究发现,LLM在金融自然语言处理任务中表现出性能提升,提出的选择框架有助于根据数据、计算需求选择合适的LLM策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Large Language Models in Finance: A Survey》的翻译。

摘要

大型语言模型(LLM)的最新进展为人工智能在金融领域的应用开辟了新的可能性。在本文中,我们提供了一项实用的调查,重点关注利用LLM执行金融任务的两个关键方面:现有的解决方案和采用指南。
首先,我们回顾了当前在金融中使用LLM的方法,包括通过零样本或小样本利用预训练的模型,对特定领域的数据进行微调,以及从头开始训练自定义LLM。我们总结了关键模型,并评估了它们在金融自然语言处理任务中的性能改进。
其次,我们提出了一个决策框架,以指导金融专业人员根据他们围绕数据、计算和性能需求的用例约束选择适当的LLM解决方案。该框架提供了一条从轻量级实验到大规模投资定制LLM的途径。
最后,我们讨论了在金融应用中利用LLM的局限性和挑战。总的来说,这项调查旨在综合最先进的技术,并为负责任地应用LLM来推进金融人工智能提供路线图。

1 引言

2 语言模型的基础

3 人工智能在金融领域的应用综述

4 LLM金融解决方案

5 L

### Chain-of-Thought Prompting Mechanism in Large Language Models In large language models, chain-of-thought prompting serves as a method to enhance reasoning capabilities by guiding the model through structured thought processes. This approach involves breaking down complex problems into simpler components and providing step-by-step guidance that mirrors human cognitive processing. The creation of these prompts typically includes selecting examples from training datasets where each example represents part of an overall problem-solving process[^2]. By decomposing tasks into multiple steps, this technique encourages deeper understanding and more accurate predictions compared to traditional methods. For instance, when faced with multi-hop question answering or logical deduction challenges, using such chains allows models not only to generate correct answers but also articulate intermediate thoughts leading up to those conclusions. Such transparency facilitates better interpretability while improving performance on various NLP benchmarks. ```python def create_chain_of_thought_prompt(task_description, examples): """ Creates a chain-of-thought prompt based on given task description and examples. Args: task_description (str): Description of the task at hand. examples (list): List containing tuples of input-output pairs used for demonstration purposes. Returns: str: Formatted string representing the final prompt including both instructions and sample cases. """ formatted_examples = "\n".join([f"Input: {ex[0]}, Output: {ex[1]}" for ex in examples]) return f""" Task: {task_description} Examples: {formatted_examples} Now try solving similar questions following above pattern. """ # Example usage examples = [ ("What color do you get mixing red and blue?", "Purple"), ("If it rains tomorrow, will we have our picnic?", "No") ] print(create_chain_of_thought_prompt("Solve logic puzzles", examples)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值