AdaMoLE: Fine-Tuning Large Language Models with Adaptive Mixture of Low-Rank Adaptation Experts

本文是LLM系列文章,针对《AdaMoLE: Fine-Tuning Large Language Models with Adaptive Mixture of Low-Rank Adaptation Experts》的翻译。

AdaMoLE:使用低秩适应专家的自适应混合来微调大型语言模型

摘要

我们介绍了 AdaMoLE,这是一种通过低秩适应 (LoRA) 专家的自适应混合来微调大型语言模型 (LLM) 的新方法。AdaMoLE 超越了采用静态 top-k 策略来激活专家的传统方法,它使用专用阈值网络动态调整激活阈值,自适应地响应不同任务的不同复杂性。通过将层中的单个 LoRA 替换为多个 LoRA 专家,并将门控功能与阈值机制集成,AdaMoLE 根据输入上下文有效地选择和激活最合适的专家。我们对各种常识性推理和自然语言处理任务的广泛评估表明,AdaMoLE 超出了基线性能。这一增强功能突出了 AdaMoLE 对 LoRA 专家的自适应选择的优势,在不相应增加专家数量的情况下提高了模型的有效性。实验验证不仅证实了 AdaMoLE 是增强 LLM 的稳健方法,而且还为自适应专家选择机制的未来研究提出了有价值的方向,有可能拓宽在不同语言处理任务中优化模型性能的范围。

1 引言

2 相关工作

3 方法

4 实验

<
### Parameter-Efficient Fine-Tuning (PEFT) 的背景 Parameter-Efficient Fine-Tuning 是一种针对基础模型(Foundation Models)优化的技术,旨在通过仅调整一小部分参数来实现高效的微调过程。这种方法不仅减少了计算资源的需求,还提高了训练效率[^1]。 在神经网络中,通常会应用正则化技术以防止过拟合并促进泛化能力。这些技术可以强制模型学习更小的权重参数,从而减少复杂度和潜在的风险。对于大规模的基础模型而言,Parameter-Efficient Fine-Tuning 方法进一步扩展了这一理念,专注于更新少量的关键参数而非整个模型的所有参数。 ### 如何获取 PEFT 论文 PDF? 为了下载有关 **Parameter-Efficient Fine-Tuning for Foundation Models** 的论文,可以通过以下几种方式: #### 1. 使用学术搜索引擎 利用 Google Scholar 或 Semantic Scholar 这样的平台输入关键词 “Parameter-Efficient Fine-Tuning”,即可找到相关研究文章及其链接。大多数情况下,可以直接访问免费版本或者通过机构权限下载全文[^2]。 #### 2. GitHub 和开源社区 许多研究人员会在其个人主页或 GitHub 上分享研究成果以及配套代码库。例如,在 awesome-LLM-resources 项目中可能包含了大量关于大语言模型(LLMs)及相关主题的资料汇总,其中包括 PEFT 技术的应用实例与理论解释。 以下是 Python 实现的一个简单示例,展示如何加载预定义适配器来进行高效微调: ```python from peft import get_peft_model, LoraConfig, TaskType # 定义 LoRA 配置 peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, ) model = ... # 加载基础模型 peft_model = get_peft_model(model, peft_config) ``` 此脚本片段展示了基于 Hugging Face 提供的 `peft` 库创建低秩适应层的过程,这是实现 parameter-efficient fine-tuning 常见的一种方法之一。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值