本文是LLM系列文章,针对《AdaMoLE: Fine-Tuning Large Language Models with Adaptive Mixture of Low-Rank Adaptation Experts》的翻译。
摘要
我们介绍了 AdaMoLE,这是一种通过低秩适应 (LoRA) 专家的自适应混合来微调大型语言模型 (LLM) 的新方法。AdaMoLE 超越了采用静态 top-k 策略来激活专家的传统方法,它使用专用阈值网络动态调整激活阈值,自适应地响应不同任务的不同复杂性。通过将层中的单个 LoRA 替换为多个 LoRA 专家,并将门控功能与阈值机制集成,AdaMoLE 根据输入上下文有效地选择和激活最合适的专家。我们对各种常识性推理和自然语言处理任务的广泛评估表明,AdaMoLE 超出了基线性能。这一增强功能突出了 AdaMoLE 对 LoRA 专家的自适应选择的优势,在不相应增加专家数量的情况下提高了模型的有效性。实验验证不仅证实了 AdaMoLE 是增强 LLM 的稳健方法,而且还为自适应专家选择机制的未来研究提出了有价值的方向,有可能拓宽在不同语言处理任务中优化模型性能的范围。