AdaMoLE: Fine-Tuning Large Language Models with Adaptive Mixture of Low-Rank Adaptation Experts

16 篇文章 0 订阅
6 篇文章 1 订阅

本文是LLM系列文章,针对《AdaMoLE: Fine-Tuning Large Language Models with Adaptive Mixture of Low-Rank Adaptation Experts》的翻译。

AdaMoLE:使用低秩适应专家的自适应混合来微调大型语言模型

摘要

我们介绍了 AdaMoLE,这是一种通过低秩适应 (LoRA) 专家的自适应混合来微调大型语言模型 (LLM) 的新方法。AdaMoLE 超越了采用静态 top-k 策略来激活专家的传统方法,它使用专用阈值网络动态调整激活阈值,自适应地响应不同任务的不同复杂性。通过将层中的单个 LoRA 替换为多个 LoRA 专家,并将门控功能与阈值机制集成,AdaMoLE 根据输入上下文有效地选择和激活最合适的专家。我们对各种常识性推理和自然语言处理任务的广泛评估表明,AdaMoLE 超出了基线性能。这一增强功能突出了 AdaMoLE 对 LoRA 专家的自适应选择的优势,在不相应增加专家数量的情况下提高了模型的有效性。实验验证不仅证实了 AdaMoLE 是增强 LLM 的稳健方法,而且还为自适应专家选择机制的未来研究提出了有价值的方向,有可能拓宽在不同语言处理任务中优化模型性能的范围。

1 引言

2 相关工作

3 方法

4 实验

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值