黑塞矩阵(Hessian Matrix)

在机器学习课程里提到了这个矩阵,那么这个矩阵是从哪里来,又是用来作什么用呢?先来看一下定义:

黑塞矩阵(Hessian Matrix),又译作海森矩阵、海瑟矩阵、海塞矩阵等,是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。黑塞矩阵最早于19世纪由德国数学家Ludwig Otto Hesse提出,并以其名字命名。黑塞矩阵常用于牛顿法解决优化问题。


一般来说, 牛顿法主要应用在两个方面, 1, 求方程的根; 2, 最优化.

在机器学习里,可以考虑采用它来计算n值比较少的数据,在图像处理里,可以抽取图像特征,在金融里可以用来作量化分析。

图像处理可以看这个连接:

http://blog.csdn.net/jia20003/article/details/16874237

量化分析可以看这个:

http://ookiddy.iteye.com/blog/2204127

下面使用TensorFlow并且使用黑塞矩阵来求解下面的方程:


代码如下:

#python 3.5.3  蔡军生    
#http://edu.csdn.net/course/detail/2592    
#  
import tensorflow as tf
import numpy as np

def cons(x):
    return tf.constant(x, dtype=tf.float32)
def compute_hessian(fn, vars):
    mat = []
    for v1 in vars:
        temp = []
        for v2 in vars:
            # computing derivative twice, first w.r.t v2 and then w.r.t v1
            temp.append(tf.gradients(tf.gradients(f, v2)[0], v1)[0])
        temp = [cons(0) if t == None else t for t in temp] # tensorflow returns None when there is no gradient, so we replace None with 0
        temp = tf.stack(temp)
        mat.append(temp)
    mat = tf.stack(mat)
    return mat


x = tf.Variable(np.random.random_sample(), dtype=tf.float32)
y = tf.Variable(np.random.random_sample(), dtype=tf.float32)


f = tf.pow(x, cons(2)) + cons(2) * x * y + cons(3) * tf.pow(y, cons(2)) + cons(4)* x + cons(5) * y + cons(6)
# arg1: our defined function, arg2: list of tf variables associated with the function
hessian = compute_hessian(f, [x, y])

sess = tf.Session()
sess.run(tf.global_variables_initializer())
print(sess.run(hessian))
输出结果如下:


再来举多一个例子的源码,它就是用来计算量化分析,这个代码很值钱啊,如下:

#python 3.5.3  蔡军生    
#http://edu.csdn.net/course/detail/2592    
# 
import numpy as np
import scipy.stats as stats
import scipy.optimize as opt

#构造Hessian矩阵
def rosen_hess(x):
    x = np.asarray(x)
    H = np.diag(-400*x[:-1],1) - np.diag(400*x[:-1],-1)
    diagonal = np.zeros_like(x)
    diagonal[0] = 1200*x[0]**2-400*x[1]+2
    diagonal[-1] = 200
    diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:]
    H = H + np.diag(diagonal)
    return H
def rosen(x):
    """The Rosenbrock function"""
    return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)
def rosen_der(x):
    xm = x[1:-1]
    xm_m1 = x[:-2]
    xm_p1 = x[2:]
    der = np.zeros_like(x)
    der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)
    der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])
    der[-1] = 200*(x[-1]-x[-2]**2)
    return der

x_0 = np.array([0.5, 1.6, 1.1, 0.8, 1.2])

res = opt.minimize(rosen, x_0, method='Newton-CG', jac=rosen_der, hess=rosen_hess,
                   options={'xtol': 1e-8, 'disp': True})
print("Result of minimizing Rosenbrock function via Newton-Conjugate-Gradient algorithm (Hessian):")
print(res)

输出结果如下:

====================== RESTART: D:/AI/sample/tf_1.43.py ======================
Optimization terminated successfully.
         Current function value: 0.000000
         Iterations: 20
         Function evaluations: 22
         Gradient evaluations: 41
         Hessian evaluations: 20
Result of minimizing Rosenbrock function via Newton-Conjugate-Gradient algorithm (Hessian):
     fun: 1.47606641102778e-19
     jac: array([ -3.62847530e-11,   2.68148992e-09,   1.16637362e-08,
         4.81693414e-08,  -2.76999090e-08])
 message: 'Optimization terminated successfully.'
    nfev: 22
    nhev: 20
     nit: 20
    njev: 41
  status: 0
 success: True
       x: array([ 1.,  1.,  1.,  1.,  1.])
>>> 


可见hessian矩阵可以使用在很多地方了吧。

1. C++标准模板库从入门到精通 

2.跟老菜鸟学C++

3. 跟老菜鸟学python

4. 在VC2015里学会使用tinyxml库

5. 在Windows下SVN的版本管理与实战 

 http://edu.csdn.net/course/detail/2579

6.Visual Studio 2015开发C++程序的基本使用 

http://edu.csdn.net/course/detail/2570

7.在VC2015里使用protobuf协议

8.在VC2015里学会使用MySQL数据库



可以看更多的网站:

http://blog.csdn.net/ubunfans/article/details/41520047

http://blog.csdn.net/baimafujinji/article/details/51167852

http://jacoxu.com/jacobian%E7%9F%A9%E9%98%B5%E5%92%8Chessian%E7%9F%A9%E9%98%B5/

http://www.cnblogs.com/logosxxw/p/4651413.html


发布了2055 篇原创文章 · 获赞 572 · 访问量 766万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览