序列数据与文本的深度学习

递归神经网络的及其不同的实现,例如长短期记忆网络LSTM以及门控循环单元gated recurrent unit GRU,它们为大多数深度学习模型提供文本和序列化数据,为序列化数据使用一维卷积。 

(1)实现一个rnn模型

import torch.nn as nn 
from torch.autograd import Variable 
class RNN(nn.Module):
    def __init__(self,input_size, hidden_size, output_size):
        super(RNN, self).__init__():
        self.hidden_size = hidden_size 
        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.i2o = nn.Linear(input_size + hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.i20(combined)
        output = self.softmax(output)
        return output, hidden 
    def initHidden(self):
        return Variable(torch.zeros(1, self.hidden_size))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值