基于MATLAB的OSPF协议网络仿真

该博客探讨了光网络中基于OSPF协议的路由算法,通过Dijkstra算法计算最小代价路径,并考虑波长连续性,优化路径选择。在路径无法满足波长连续时,算法会检查次短路径。同时,使用遗传算法解决TSP问题,寻找网络中的最短路径。最后,展示了算法的迭代过程及最短路径效果。
摘要由CSDN通过智能技术生成

step1. 当有连接请求时,算法开始,考察源节点S是否为域的边界节点,不是的话在域内使用最短跳算法路由至此域的边界节点

域的边界节点用U表示(图中A, B),下一跳接口为[D, N, r(U, N)],D为宿节点,N为下一跳结点,r(U, N) = {wU, wN, hU-N},wU, wNUN结点间波长,hU-N 是U,N间的代价,再到下一跳r(N, E)E为下一个域的边界节点。

step2. 根据OSPF 协议规范,在请求连接的两点之间,用Dijkstra 算法计算出所有路径,尽量消除冗余存储和冗余计算,挑选出代价最少的路径,hU-D = hU-N+ hN-E + …+h*-D, 总代价为各跳路径相加,

step3. 考察波长连续性,: r(U, N) = {wU, wN1, hU-N}, r(N, E) = {wN2, wE1, hN-E}…r(*, D) = {w*2, wD, h*-D}.

If wN1 = wN2, && wE1= wE2 &&…. w*1= w*2, return null,

否则,加入波长变换器, 此路径代价变为C。

step4. 考察次短路径,是否存在符合波长连续性的波长,若有,则转到步骤7,否则执行步骤6;

step5. 设最短路径增加波长变换器代价为C,采用次短路径的代价为H2,比较C、H2,若C<H2,则采用增加波长变换器方法,选择最短路径,否则采用次短路径;跳至步骤4;

step6. 循环执行步骤4,5,直至计算出合适的路径;

Step7. 显示所选路径,算法结束,S结点开始发包至宿节点D

clc;
clear;
close all;
 
webpoint=30;        %节点数目
 
[D,M]=tsp(webpoint);
popsize=20;
N=199;                  %N为迭代次数
pcro=0.85;
pmut=0.5;
gen=1;
minval=inf;
pop=initialize(popsize,webpoint);
while gen<=N     
  val=adapt(pop,popsize,webpoint,D);  

  fitval=(1000./val).^15;
  [valmin,minind]=min(val);
  
%保存最优
  if valmin<minval
      minval=valmin;
      minpath=pop(minind,:);
   end   
   minf(gen)=minval;                 %最短路径长度      
pop=select(pop,fitval,popsize,webpoint,minpath);  %比例选择
pop=crossover(pop,pcro,popsize,webpoint);  %OX交叉
pop=mutation(pop,pmut,popsize,webpoint);   %变异      
drawTSP(M,minpath,minval,gen,0);
gen=gen+1;
end
drawTSP(M,minpath,minval,gen,1);
hold on

r=0.022;
t=0:pi/180:2*pi;
x=r*cos(t)+0.03;
y=r*sin(t)+0.03;
plot(x,y,'b--');hold on;
plot([0.03,0.01],[0.03,0.03],'b--');hold on;
plot([0.03,0.04],[0.03,0.01],'b--');hold on;
plot([0.03,0.02],[0.03,0.01],'b--');hold on;
plot([0.03,0.05],[0.03,0.03],'b--');hold on;
plot([0.03,0.03],[0.03,0.05],'b--');hold on;

plot([0.02,0.04],[0.01,0.01],'b--');hold on;
plot([0.04,0.05],[0.01,0.03],'b--');hold on;
plot([0.05,0.03],[0.03,0.05],'b--');hold on;
plot([0.03,0.01],[0.05,0.03],'b--');hold on;
plot([0.01,0.02],[0.03,0.01],'b--');hold on;
%================================================
%================================================
hold on
t=0:pi/180:2*pi;
x=r*cos(t)+0.13;
y=r*sin(t)+0.03;
plot(x,y,'b--');hold on

plot([0.13,0.11],[0.03,0.03],'b--');hold on;
plot([0.13,0.14],[0.03,0.01],'b--');hold on;
plot([0.13,0.12],[0.03,0.01],'b--');hold on;
plot([0.13,0.15],[0.03,0.03],'b--');hold on;
plot([0.13,0.13],[0.03,0.05],'b--');hold on;

plot([0.12,0.14],[0.01,0.01],'b--');hold on;
plot([0.14,0.15],[0.01,0.03],'b--');hold on;
plot([0.15,0.13],[0.03,0.05],'b--');hold on;
plot([0.13,0.11],[0.05,0.03],'b--');hold on;
plot([0.11,0.12],[0.03,0.01],'b--');hold on;
%================================================
%================================================


t=0:pi/180:2*pi;
x=r*cos(t)+0.23;
y=r*sin(t)+0.03;
plot(x,y,'b--');hold on

%             0.22 0.01;
%             0.24 0.01;
%             0.21 0.03;
%               0.23 0.03;
%             0.25 0.03;
%             0.23 0.05;
plot([0.23,0.21],[0.03,0.03],'b--');hold on;
plot([0.23,0.24],[0.03,0.01],'b--');hold on;
plot([0.23,0.22],[0.03,0.01],'b--');hold on;
plot([0.23,0.25],[0.03,0.03],'b--');hold on;
plot([0.23,0.23],[0.03,0.05],'b--');hold on;

plot([0.22,0.24],[0.01,0.01],'b--');hold on;
plot([0.24,0.25],[0.01,0.03],'b--');hold on;
plot([0.25,0.23],[0.03,0.05],'b--');hold on;
plot([0.23,0.21],[0.05,0.03],'b--');hold on;
plot([0.21,0.22],[0.03,0.01],'b--');hold on;
%================================================
%================================================

t=0:pi/180:2*pi;
x=r*cos(t)+0.08;
y=r*sin(t)+0.08;
plot(x,y,'b--');hold on
 
plot([0.08,0.07],[0.08,0.06],'b--');hold on;
plot([0.08,0.09],[0.08,0.06],'b--');hold on;
plot([0.08,0.06],[0.08,0.08],'b--');hold on;
plot([0.08,0.10],[0.08,0.08],'b--');hold on;
plot([0.08,0.08],[0.08,0.10],'b--');hold on;

plot([0.07,0.09],[0.06,0.06],'b--');hold on;
plot([0.09,0.10],[0.06,0.08],'b--');hold on;
plot([0.10,0.08],[0.08,0.1],'b--');hold on;
plot([0.08,0.06],[0.1,0.08],'b--');hold on;
plot([0.06,0.07],[0.08,0.06],'b--');hold on;
%================================================
%================================================

t=0:pi/180:2*pi;
x=r*cos(t)+0.18;
y=r*sin(t)+0.08;
plot(x,y,'b--');hold on;
%             0.17 0.06;
%             0.18 0.06;
%             0.16 0.08;
%               0.18 0.08;
%             0.20 0.08;
%             0.18 0.10;  
plot([0.18,0.17],[0.08,0.06],'b--');hold on;
plot([0.18,0.19],[0.08,0.06],'b--');hold on;
plot([0.18,0.16],[0.08,0.08],'b--');hold on;
plot([0.18,0.20],[0.08,0.08],'b--');hold on;
plot([0.18,0.18],[0.08,0.10],'b--');hold on;

plot([0.17,0.19],[0.06,0.06],'b--');hold on;
plot([0.19,0.20],[0.06,0.08],'b--');hold on;
plot([0.20,0.18],[0.08,0.1],'b--');hold on;
plot([0.18,0.16],[0.1,0.08],'b--');hold on;
plot([0.16,0.17],[0.08,0.06],'b--');hold on;
%================================================
%================================================

figure;plot(minf,'-r');xlabel('迭代次数');ylabel('最短路径长度');
disp('最短路径为:');disp(minpath);
disp('最短路径长度为:');disp(minval);

 A12-1

基于MATLAB网络控制系统仿真-基于MATLAB网络控制系统仿真.pdf 基于MATLAB网络控制系统仿真 【英文篇名】The simulation of networked control systems based on MATLAB【作者中文名】[url=]许顺孝[/url];【作者英文名】[url=]XU Shun-xiao(Marine Engineering Institute[/url]; [url=]Jimei University[/url]; [url=]Xiamen[/url]; [url=]Fujian 361021[/url]; [url=]China)[/url];【作者单位】[url=]集美大学轮机工程学院[/url];【文献出处】福州大学学报, Journal of Fuzhou University, 编辑部邮箱 2008年 S1期   期刊荣誉:中文核心期刊要目总览  ASPT来源刊  CJFD收录刊【关键词】[url=]网络控制系统[/url]; [url=]ActiveX[/url]; [url=]MATLAB[/url]; [url=]TrueTime[/url];【英文关键词】[url=]networked control system[/url]; [url=]Active X[/url]; [url=]MATLAB[/url]; [url=]TrueTime[/url];【摘要】介绍了基于TrueTime工具包和Active X技术的仿真平台实现方法.前者是根据网络MAC协议对通信延迟机理进行建模的仿真软件包;后者是针对网络控制系统通信模型仿真困难的缺点而提出,该方法通过ActiveX技术实现了对象模型和控制器通信,为网络控制系统的理论研究提供有效的检验平台.通过对两者的比较指出两种方法的优缺点.【英文摘要】This paper introduces two methods of simulation based on TrueTime and Active X,the first is a soft package which create model according to delay principle of networked MAC protocol,the latter is a new method to deal with the difficulty on the simulation of communication model.This method realizes the communication of the plant model and controller through ActiveX technology,then provides an effective test platform for theory research on NCS.Finally this paper gives the advantage and disadvantage by comparin...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值