基于GRNN广义回归神经网络的车牌字符分割和识别matlab仿真

目录

一、理论基础

二、核心MATLAB程序

三、MATLAB仿真测试结果


一、理论基础

1.1理论概述

       广义回归神经网络(General Regression Neural Network,GRNN)是一种基于神经网络的非线性回归预测模型,广泛应用于模式识别、预测分析等领域。在车牌字符分割和识别中,GRNN 可以用于实现车牌字符的分类和位置预测。

      GRNN 是一种基于神经网络的分析工具,适用于解决回归和模式识别问题。GRNN 具有较好的非线性映射能力,可广泛应用于复杂系统的预测和控制。GRNN 的核心思想是利用径向基函数(Radial Basis Function,RBF)作为激活函数,将输入数据映射到高维特征空间,再通过线性回归方法进行预测。GRNN 结构由输入层、隐藏层和输出层组成。其中,输入层负责接收输入数据,隐藏层通过 RBF 函数将输入数据映射到高维特征空间,输出层为线性回归模型,对隐藏层输出进行加权求和,得到最终预测结果。

车牌字符分割和识别是车辆识别的重要组成部分,主要包括以下步骤:

  1. 车牌定位:首先需要确定车牌在图像中的位置。常用的方法有基于图像处理和机器学习方法。基于图像处理的方法可以通过对图像进行二值化、形态学处理等操作,检测出车牌区域。基于机器学习的方法可以利用支持向量机(SVM)、神经网络等算法,对车牌区域进行分类和定位。
  2. 字符分割:在车牌定位完成后,需要对车牌上的字符进行分割。字符分割可以采用基于图像处理的方法或机器学习方法。基于图像处理的方法可以通过对字符进行连通域分析、形态学处理等操作,实现字符分割。基于机器学习方法可以利用聚类算法、神经网络等算法,对字符进行分类和分割。
  3. 字符识别:字符分割完成后,需要对每个字符进行识别。字符识别通常采用基于深度学习的方法,如卷积神经网络(CNN)、循环神经网络(RNN)等。这些方法可以利用大量的标注数据进行训练,提高字符识别准确率。

1.2基于GRNN广义回归神经网络的车牌字符分割和识别

      GRNN通常被用来进行函数逼近。它具有一个径向基隐含层和一个特殊的线性层。第一层和第二层的神经元数目都与输入的样本向量对的数目相等。GRNN结构如图1所示,整个网络包括四层神经元:输入层、模式层、求和层与输出层。

       输入层的神经元数目与学习样本中输入向量的维数m相等,每个神经元都是一个简单的分布单元,这些神经元直接将输入变量传递到隐含层中。模式层的神经元数目即为学习样本的数目n,每个神经元都分别对应一个不同的学习样本,模式层中第i个神经元的传递函数为:

       由此可以看出,当选择出学习样本之后,GRNN网络的结构与权值都是完全确定的,因而训练GRNN网络要比训练BP网络和RBF网络便捷得多。 

二、核心MATLAB程序

clc;
clear;
close all;
warning off;
addpath 'func\'

%神经网络训练
net = func_grnn_train();


for ii = 1:22

 

word1=imresize(tmps{1},[40 20]);
word2=imresize(tmps{2},[40 20]);
word3=imresize(tmps{3},[40 20]);
word4=imresize(tmps{4},[40 20]);
word5=imresize(tmps{5},[40 20]);
word6=imresize(tmps{6},[40 20]);
word7=imresize(tmps{7},[40 20]);

%第1个
words   = word1;
wordss  = func_yuchuli(words);
wordsss = sim(net,wordss');
[V,I]   = max(wordsss);
d       = I;
y{1}    = func_check(d);

%第2个
words   = word2;
wordss  = func_yuchuli(words);
wordsss = sim(net,wordss');
[V,I]   = max(wordsss);
d       = I;
y{2}    = func_check(d);
%第3个
words   = word3;
wordss  = func_yuchuli(words);
wordsss = sim(net,wordss');
[V,I]   = max(wordsss);
d       = I;
y{3}    = func_check(d);
%第4个
words   = word4;
wordss  = func_yuchuli(words);
wordsss = sim(net,wordss');
[V,I]   = max(wordsss);
d       = I;
y{4}    = func_check(d);
%第5个
words   = word5;
wordss  = func_yuchuli(words);
wordsss = sim(net,wordss');
[V,I]   = max(wordsss);
d       = I;
y{5}    = func_check(d);
%第6个
words   = word6;
wordss  = func_yuchuli(words);
wordsss = sim(net,wordss');
[V,I]   = max(wordsss);
d       = I;
y{6}    = func_check(d);
%第7个
words   = word7;
wordss  = func_yuchuli(words);
wordsss = sim(net,wordss');
[V,I]   = max(wordsss);
d       = I;
y{7}    = func_check(d);


figure(1);
subplot(241);imshow(word1);title(num2str(y{1}));
subplot(242);imshow(word2);title(num2str(y{2}));
subplot(243);imshow(word3);title(num2str(y{3}));
subplot(244);imshow(word4);title(num2str(y{4}));
subplot(245);imshow(word5);title(num2str(y{5}));
subplot(246);imshow(word6);title(num2str(y{6}));
subplot(247);imshow(word7);title(num2str(y{7}));

pause(2);
 
end



NAME = ['车牌图片test\',num2str(ii),'.jpg'];
I =imread(NAME);
figure(1);
subplot(121);
imshow(I);
title('原图');
I1=rgb2gray(I);
subplot(122);
imshow(I1);
title('灰度图');
%小波变换车牌定位
Ip    = func_position(I,I1,1.2,80);
figure(2);
subplot(131);
imshow(Ip);
title('车牌区域');
%通过心态学处理,提取车牌区域
Ip    = double(bwareaopen(Ip,100));
%膨胀
se    = strel('ball',100,50);
Ip2   = imdilate(Ip,se);
%确定灰度阈值
level = graythresh(uint8(Ip2)); 
Ip3   = Ip2;
%二值化
[R,C] = size(Ip2);
for i = 1:R
    for j = 1:C
        if Ip2(i,j)>255*level
           Ip3(i,j) = 1;
        else
           Ip3(i,j) = 0; 
        end
    end
end
subplot(132);
imshow(Ip3);
title('去掉干扰');
Ipos = func_Pai_Position(I,Ip3);
subplot(133);
imshow(Ipos);
title('车牌提取');
pause(0.05);

三、MATLAB仿真测试结果

A10-50

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值