目录
一、理论基础
1.1理论概述
广义回归神经网络(General Regression Neural Network,GRNN)是一种基于神经网络的非线性回归预测模型,广泛应用于模式识别、预测分析等领域。在车牌字符分割和识别中,GRNN 可以用于实现车牌字符的分类和位置预测。
GRNN 是一种基于神经网络的分析工具,适用于解决回归和模式识别问题。GRNN 具有较好的非线性映射能力,可广泛应用于复杂系统的预测和控制。GRNN 的核心思想是利用径向基函数(Radial Basis Function,RBF)作为激活函数,将输入数据映射到高维特征空间,再通过线性回归方法进行预测。GRNN 结构由输入层、隐藏层和输出层组成。其中,输入层负责接收输入数据,隐藏层通过 RBF 函数将输入数据映射到高维特征空间,输出层为线性回归模型,对隐藏层输出进行加权求和,得到最终预测结果。
车牌字符分割和识别是车辆识别的重要组成部分,主要包括以下步骤:
- 车牌定位:首先需要确定车牌在图像中的位置。常用的方法有基于图像处理和机器学习方法。基于图像处理的方法可以通过对图像进行二值化、形态学处理等操作,检测出车牌区域。基于机器学习的方法可以利用支持向量机(SVM)、神经网络等算法,对车牌区域进行分类和定位。
- 字符分割:在车牌定位完成后,需要对车牌上的字符进行分割。字符分割可以采用基于图像处理的方法或机器学习方法。基于图像处理的方法可以通过对字符进行连通域分析、形态学处理等操作,实现字符分割。基于机器学习方法可以利用聚类算法、神经网络等算法,对字符进行分类和分割。
- 字符识别:字符分割完成后,需要对每个字符进行识别。字符识别通常采用基于深度学习的方法,如卷积神经网络(CNN)、循环神经网络(RNN)等。这些方法可以利用大量的标注数据进行训练,提高字符识别准确率。
1.2基于GRNN广义回归神经网络的车牌字符分割和识别
GRNN通常被用来进行函数逼近。它具有一个径向基隐含层和一个特殊的线性层。第一层和第二层的神经元数目都与输入的样本向量对的数目相等。GRNN结构如图1所示,整个网络包括四层神经元:输入层、模式层、求和层与输出层。
输入层的神经元数目与学习样本中输入向量的维数m相等,每个神经元都是一个简单的分布单元,这些神经元直接将输入变量传递到隐含层中。模式层的神经元数目即为学习样本的数目n,每个神经元都分别对应一个不同的学习样本,模式层中第i个神经元的传递函数为:
由此可以看出,当选择出学习样本之后,GRNN网络的结构与权值都是完全确定的,因而训练GRNN网络要比训练BP网络和RBF网络便捷得多。
二、核心MATLAB程序
clc;
clear;
close all;
warning off;
addpath 'func\'
%神经网络训练
net = func_grnn_train();
for ii = 1:22
word1=imresize(tmps{1},[40 20]);
word2=imresize(tmps{2},[40 20]);
word3=imresize(tmps{3},[40 20]);
word4=imresize(tmps{4},[40 20]);
word5=imresize(tmps{5},[40 20]);
word6=imresize(tmps{6},[40 20]);
word7=imresize(tmps{7},[40 20]);
%第1个
words = word1;
wordss = func_yuchuli(words);
wordsss = sim(net,wordss');
[V,I] = max(wordsss);
d = I;
y{1} = func_check(d);
%第2个
words = word2;
wordss = func_yuchuli(words);
wordsss = sim(net,wordss');
[V,I] = max(wordsss);
d = I;
y{2} = func_check(d);
%第3个
words = word3;
wordss = func_yuchuli(words);
wordsss = sim(net,wordss');
[V,I] = max(wordsss);
d = I;
y{3} = func_check(d);
%第4个
words = word4;
wordss = func_yuchuli(words);
wordsss = sim(net,wordss');
[V,I] = max(wordsss);
d = I;
y{4} = func_check(d);
%第5个
words = word5;
wordss = func_yuchuli(words);
wordsss = sim(net,wordss');
[V,I] = max(wordsss);
d = I;
y{5} = func_check(d);
%第6个
words = word6;
wordss = func_yuchuli(words);
wordsss = sim(net,wordss');
[V,I] = max(wordsss);
d = I;
y{6} = func_check(d);
%第7个
words = word7;
wordss = func_yuchuli(words);
wordsss = sim(net,wordss');
[V,I] = max(wordsss);
d = I;
y{7} = func_check(d);
figure(1);
subplot(241);imshow(word1);title(num2str(y{1}));
subplot(242);imshow(word2);title(num2str(y{2}));
subplot(243);imshow(word3);title(num2str(y{3}));
subplot(244);imshow(word4);title(num2str(y{4}));
subplot(245);imshow(word5);title(num2str(y{5}));
subplot(246);imshow(word6);title(num2str(y{6}));
subplot(247);imshow(word7);title(num2str(y{7}));
pause(2);
end
NAME = ['车牌图片test\',num2str(ii),'.jpg'];
I =imread(NAME);
figure(1);
subplot(121);
imshow(I);
title('原图');
I1=rgb2gray(I);
subplot(122);
imshow(I1);
title('灰度图');
%小波变换车牌定位
Ip = func_position(I,I1,1.2,80);
figure(2);
subplot(131);
imshow(Ip);
title('车牌区域');
%通过心态学处理,提取车牌区域
Ip = double(bwareaopen(Ip,100));
%膨胀
se = strel('ball',100,50);
Ip2 = imdilate(Ip,se);
%确定灰度阈值
level = graythresh(uint8(Ip2));
Ip3 = Ip2;
%二值化
[R,C] = size(Ip2);
for i = 1:R
for j = 1:C
if Ip2(i,j)>255*level
Ip3(i,j) = 1;
else
Ip3(i,j) = 0;
end
end
end
subplot(132);
imshow(Ip3);
title('去掉干扰');
Ipos = func_Pai_Position(I,Ip3);
subplot(133);
imshow(Ipos);
title('车牌提取');
pause(0.05);
三、MATLAB仿真测试结果
A10-50