目录
一、理论基础
SIFT算法得到了图像中的特征点以及相应的特征描述,如何把两张图像中的特征点匹配起来呢?一般的可以使用K近邻(KNN)算法。K近邻算法求取在空间中距离最近的K个数据点,并将这些数据点归为一类。在进行特征点匹配时,一般使用KNN算法找到最近邻的两个数据点,如果最接近和次接近的比值大于一个既定的值,那么我们保留这个最接近的值,认为它和其匹配的点为good match(有Lowe在SIFT论文中提出)。
在20世纪80年代中期,很多学者开始对点集数据的配准进行了大量研究。1987年,Horn、Arun[2]等人用四元数法提出点集对点集配准方法。这种点集与点集坐标系匹配算法通过实践证明是一个解决复杂配准问题的关键方法。1992年,计算机视觉研究者Besl和Mckay介绍了一种高层次的基于自由形态曲面的配准方法,也称为迭代就近点法ICP(Iterative Closest Point)。以点集对点集(PSTPS)配准方法为基础,他们阐述了一种曲面拟合算法,该算法是基于四元数的点集到点集配准方法。从测量点集中确定其对应的就近点点集后,运用Faugera和Hebert提出的方法计算新的就近点点集。用该方法进行

本文介绍了基于SIFT算法的特征匹配和ICP迭代算法在三维点云配准中的应用。首先,讨论了SIFT算法的尺度不变性及其在图像特征提取中的作用。接着,详细阐述了ICP算法的原理和演变,包括point-to-plane、point-to-projection等不同搜索策略。最后,概述了从特征匹配到点云配准的完整流程,并在MATLAB中进行了仿真验证。
订阅专栏 解锁全文
471

被折叠的 条评论
为什么被折叠?



