基于强化学习的倒立摆平衡控制算法matlab仿真

目录

1. 强化学习基础

1.1 基本概念

1.2 马尔可夫决策过程 (MDP)

2. 倒立摆动力学模型

3. 强化学习算法

4. 应用于倒立摆平衡控制

4.1 状态空间和动作空间

4.2 奖励函数

5.MATLAB程序

6.仿真结果


       基于强化学习的倒立摆平衡控制算法是一种非常实用的技术,在机器人学、自动化等领域有着广泛的应用。倒立摆问题是一个经典的控制问题,它涉及到使一个摆保持在不稳定的直立位置。强化学习方法可以自动学习控制策略,而不需要显式地了解系统的动力学模型。本文将详细介绍基于强化学习的倒立摆平衡控制算法,包括强化学习的基本概念、倒立摆的动力学模型、常用的强化学习算法(如Q-learning和Policy Gradients),以及如何将这些算法应用于倒立摆平衡控制问题。

1. 强化学习基础

      强化学习是一种机器学习方法,它使代理能够在环境中通过与环境交互来学习最优的行为策略。其核心思想是代理通过观察环境状态、采取行动并获得奖励或惩罚来学习如何最大化累积奖励。

1.1 基本概念

  • 状态 (S):代理所处的环境的状态。
  • 动作 (A):代理可以选择的动作。
  • 策略 (π):从状态到动作的概率分布函数,即给定状态s时选择动作a的概率。
  • 奖励 (R):代理执行动作后从环境中获得的反馈,反映了该动作的好坏程度。
  • 价值函数 (V):长期预期回报的函数,分为状态价值函数V(s) 和动作价值函数Q(s,a)。
  • *最优策略 (π)**:使得长期预期回报最大的策略。

1.2 马尔可夫决策过程 (MDP)

强化学习中的问题通常被建模为马尔可夫决策过程(MDP)。MDP由四元组(S,A,P,R) 组成,其中:

  • S 是所有可能状态的集合。
  • A 是所有可能动作的集合。
  • P 是状态转移概率,即给定状态 s 和动作a,转移到状态s′ 的概率P(s′∣s,a)。
  • R 是奖励函数,即给定状态s 和动作a,得到的即时奖励R(s,a)。

2. 倒立摆动力学模型

       倒立摆可以简化为一个单自由度系统。设摆长为l,摆的质量为m,小车的质量为M,摆角为θ,小车的位置为x,则摆的运动方程可以表示为:

其中F 是作用于小车上的力,g 是重力加速度。

3. 强化学习算法

       Q-learning是一种无模型的强化学习算法,适用于离散状态和动作空间的情况。其目标是找到最优的动作价值函数Q∗(s,a)。

4. 应用于倒立摆平衡控制

4.1 状态空间和动作空间

  • 状态空间:S={x,x˙,θ,θ˙} 表示小车的位置、速度以及摆的角度和角速度。
  • 动作空间:A 可以是离散的(例如,向左施加力、向右施加力或不施加力)或连续的(施加的力大小可以在一定范围内变化)。

4.2 奖励函数

奖励函数的设计对于训练有效的控制策略至关重要。一种常见的奖励函数设计方式是:

这里的目的是让摆尽可能地保持在垂直位置,并且小车也尽可能地保持在原位。

5.MATLAB程序

% 函数定义:根据目标位置与两连杆初始角度生成机器人模型并模拟运动
function func_robot(X1,Y1,Arm1,Arm2,Iters)
% 初始化机器人模型,最大身体数量为3,数据格式为列向量
robot = robotics.RigidBodyTree('DataFormat','column','MaxNumBodies',3);

% 定义连杆长度
L1 = 5; % 连杆1长度
L2 = 5; % 连杆2长度

% 创建第一个连杆和关节
body  = robotics.RigidBody('link1');
joint = robotics.Joint('joint1', 'revolute');
% 设置关节固定变换(无位移)
setFixedTransform(joint,trvec2tform([0 0 0]));
joint.JointAxis = [0 0 1]; % 关节轴沿Z方向
body.Joint = joint;
addBody(robot, body, 'base'); % 将连杆添加到基座上

% 同理创建第二个连杆及关节,并将其连接到第一个连杆
body = robotics.RigidBody('link2');
joint = robotics.Joint('joint2','revolute');
setFixedTransform(joint, trvec2tform([L1,0,0])); % 沿X轴偏移L1
joint.JointAxis = [0 0 1];
body.Joint = joint;
addBody(robot, body, 'link1');

% 创建末端执行器并固定于第二个连杆
body = robotics.RigidBody('tool');
joint = robotics.Joint('fix1','fixed');
setFixedTransform(joint, trvec2tform([L2, 0, 0]));
body.Joint = joint;
addBody(robot, body, 'link2');

% 显示机器人模型细节
showdetails(robot)

% 初始化角度序列变量
k = 1;

% 根据连杆1角度范围生成角度序列
if(Arm1>30)
    for i = 30:Arm1
        qs(k,1) = i*pi/180; % 转换为弧度
        qs(k,2) = 30*pi/180; % 初始化连杆2角度
        k = k+1;
    end
else
    for i = 30:-1:Arm1
        qs(k,1) = i*pi/180;
        qs(k,2) = 30*pi/180;
        k = k+1;
    end
end 

% 类似地处理连杆2角度序列
if(Arm2>30)
    for j = 30:Arm2
        qs(k,2) = j*pi/180;
        qs(k,1) = i*pi/180; % 使用前一循环的i值
        k = k+1;
    end
else
    for j = 30:-1:Arm2
        qs(k,2) = j*pi/180;
        qs(k,1) = i*pi/180;
        k = k+1;
    end
end

% 绘制机器人模型并设置视图
figure
show(robot,qs(1,:)');
view(2)
ax = gca;
ax.Projection = 'orthographic'; % 设置正交投影
hold on

% 绘制目标点
for l = 1:size(qs,1)
    points(l,1) = X1;
    points(l,2) = Y1;
end
scatter(points(:,1),points(:,2),'k'); % 散点图表示目标位置

% 添加标题与坐标轴限制
title(Iters); % 代数或迭代次数
axis([-11 11 -11 11]) % 设置坐标轴范围

% 动画模拟
framesPerSecond = 15; % 帧率
r = robotics.Rate(framesPerSecond);
for i = 1:size(qs,1)
    show(robot,qs(i,:)','PreservePlot',false); % 更新姿势显示
    drawnow % 更新图形窗口
    waitfor(r); % 等待以保持帧率
end
end
up4121

6.仿真结果

       基于强化学习的倒立摆平衡控制算法通过学习来寻找最优控制策略,无需事先了解系统的精确动力学模型。通过使用适当的强化学习算法(如Q-learning或Policy Gradients),代理可以学会如何通过施加适当的力来维持倒立摆的平衡状态。

      强化学习方法的一个关键优势在于它们可以处理高度非线性的系统,并且具有较强的适应性和鲁棒性。然而,这也意味着训练过程可能较为复杂且耗时,特别是当涉及到连续动作空间时。此外,奖励函数的设计对于获得良好的控制性能至关重要,因此需要仔细设计和调整。

  • 19
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值