目录
基于三自由度(3DoF)的Stewart平台,即平台在空间中仅具有沿X、Y、Z三个线性方向的平移自由度,而不涉及旋转,是并联机器人领域的一个重要研究对象。其运动控制原理涉及到运动学建模、逆向运动学求解、动力学分析以及控制策略的设计等多个方面。
1.正向运动学
正向运动学旨在从连杆的长度变化推导出平台的位置。对于3DoF Stewart平台,由于我们只关心平台的平移而忽略旋转,正向运动学问题可以简化处理。若假定所有连杆长度变化对平台的姿态无影响,平台的位移向量P=[X,Y,Z]T可直接由连杆长度{li}(i=1,2,...,6)通过某种几何关系确定。但在实际应用中,这种直接的线性关系较为罕见,通常需要借助更复杂的几何约束和解析方法。
2. 逆向运动学
逆向运动学(RFK)是运动控制的核心,目标是给定平台期望的位置Pd=[Xd,Yd,Zd]T,求解出各连杆应调整到的长度{li∗},以实现这一位置。对于3DoF平台,逆向运动学问题通常转化为一组线性或非线性方程组的求解。以最简单的线性模型为例,假设平台仅沿Z轴移动,忽略X和Y方向的贡献,逆向运动学方程可简化为:
其中,ki是与连杆i长度变化至平台Z位置贡献相关的系数,依赖于平台的具体几何配置。
在实际情况中,考虑平台在X、Y、Z三个方向的平移,逆向运动学问题变得更为复杂,通常需要采用数值方法或解析近似方法求解。一个通用的非线性逆向运动学方程组可表示为:
其中,f为连杆长度到平台位移的非线性映射函数,求解方法可能涉及牛顿-拉弗森法或其他数值优化算法。
3. 动力学分析
Stewart平台的动力学分析涉及平台及其连杆的质量、惯量、摩擦力、驱动力等参数,通过拉格朗日方程或牛顿-欧拉方程来描述系统的动力学行为。简化模型中,忽略摩擦和弹性变形,平台的动力学方程可以表示为:
4. 控制策略
模型预测控制(MPC)
MPC基于系统模型预测未来状态,并通过优化控制输入序列来最小化某种性能指标。对于Stewart平台,MPC可以有效处理复杂的约束条件和非线性动力学,提高控制精度和响应速度。
自适应控制
自适应控制通过在线调整控制器参数来应对参数不确定性或环境变化,如自适应PID控制,其参数K^p(t),K^i(t),K^d(t)随时间动态调整,以满足控制性能要求。
5.MATLAB程序
.....................................................................
while error == 1
prompt = {'中央高度(m):', '滚转角度(deg):', '俯仰角度(deg):'};
dlg_title = '目标平台位置';
num_lines = 1;
defaultans = {'0.6', '40', '40'};
answer = inputdlg(prompt, dlg_title, num_lines, defaultans);
z_final = str2double(char(answer(1))); % 目标高度
theta = str2double(char(answer(2))) * pi/180; % 目标滚转角(弧度制)
phi = str2double(char(answer(3))) * pi/180; % 目标俯仰角(弧度制)
% 检查目标位置是否超出液压缸长度限制
e1 = z_final + jack1_p(1)*sin(phi) + jack1_p(2)*sin(theta);
e2 = z_final + jack2_p(1)*sin(phi) + jack2_p(2)*sin(theta);
e3 = z_final + jack3_p(1)*sin(phi) + jack3_p(2)*sin(theta);
error = 0;
if (e1 < closed_length) || (e2 < closed_length) || (e3 < closed_length) || (e1 > limit_length) || (e2 > limit_length) || (e3 > limit_length)
error = 1;
else
error = 0;
end
end
grid on
% 绘制液压缸移动过程和基座
xb = [jack1_b(1) jack2_b(1) jack3_b(1)];
yb = [jack1_b(2) jack2_b(2) jack3_b(2)];
zb = [jack1_b(3) jack2_b(3) jack3_b(3)];
x0 = [jack1_initial(1) jack2_initial(1) jack3_initial(1)];
y0 = [jack1_initial(2) jack2_initial(2) jack3_initial(2)];
z0 = [jack1_initial(3) jack2_initial(3) jack3_initial(3)];
plot3(0.1,0.0,0.7,-0.1,-0.1,0)
hold on
% 绘制初始位置连线
plot3([xb(1) x0(1)], [yb(1) y0(1)], [zb(1) z0(1)]);
plot3([xb(2) x0(2)], [yb(2) y0(2)], [zb(2) z0(2)]);
plot3([xb(3) x0(3)], [yb(3) y0(3)], [zb(3) z0(3)]);
fill3(x0,y0,z0,1);
hold off
grid on
for i = 1:100
x = [(x0(1) + i*(jack1_final(1) - x0(1))/100) (x0(2) + i*(jack2_final(1) - x0(2))/100) (x0(3) + i*(jack3_final(1) - x0(3))/100)];
y = [(y0(1) + i*(jack1_final(2) - y0(1))/100) (y0(2) + i*(jack2_final(2) - y0(2))/100) (y0(3) + i*(jack3_final(2) - y0(3))/100)];
z = [(z0(1) + i*(jack1_final(3) - z0(1))/100) (z0(2) + i*(jack2_final(3) - z0(2))/100) (z0(3) + i*(jack3_final(3) - z0(3))/100)];
plot3(0.1,0.0,0.7,-0.1,-0.1,0)
hold on
plot3([xb(1) x(1)], [yb(1) y(1)], [zb(1) z(1)]);
plot3([xb(2) x(2)], [yb(2) y(2)], [zb(2) z(2)]);
plot3([xb(3) x(3)], [yb(3) y(3)], [zb(3) z(3)]);
fill3(x,y,z,1)
hold off
pause(0.1);
end
grid on
up4078
6.仿真结果
3DoF Stewart平台的运动控制是一个综合运用运动学、动力学理论及先进控制技术的过程。通过精确的逆向运动学求解、动态模型的建立以及高效控制策略的设计,可以实现平台在三维空间中的快速、准确和平稳的定位。