第4章-变换-4.3-四元数

4.3 四元数

尽管四元数早在1843年就由William Rowan Hamilton爵士发明,作为复数的扩展,但直到1985年Shoemake[1633]才将它们引入计算机图形领域 1 ^1 1。四元数用于表示旋转和方位。它们在几个方面都优于欧拉角和矩阵。任何三维方向都可以表示为围绕特定轴的单次旋转。给定轴和角度表示,与四元数转换相互转换很简单,然后任一方向的欧拉角转换则具有挑战性。四元数可用于稳定和恒定的方向插值,这是欧拉角无法很好完成的。

复数有实部和虚部。每个复数由两个实数表示,第二个实数乘以 − 1 \sqrt{-1} 1 。同样,四元数有四个部分。前三个值与旋转轴密切相关,旋转角度影响所有四个部分(更多可参考第4.3.2节)。每个四元数由四个实数表示,每个实数与不同的部分相关联。由于四元数有四个分量,我们选择将它们表示为向量,但为了区分它们,我们给它们戴上帽子: q ^ \hat{\rm\pmb{q}} qqq^。我们从四元数的一些数学背景开始,然后用它来构造各种有用的转换。

4.3.1 数学背景

我们从四元数的定义开始。

定义:四元数 q ^ \hat{\rm\pmb{q}} qqq^可以通过以下方式定义,都是等价的。
q ^ = ( q v , q w ) = i q x + j q y + k q z + q w = q v + q w , q v = i q x + j q y + k q z = ( q x , q y , q z ) , i 2 = j 2 = k 2 = − 1 , j k = − k j = i , k i = − i k = j , i j = − j i = k . (4.31) \begin{aligned} \hat{\rm\pmb{q}} = ({\rm\pmb{q}}_v, q_w) = iq_x + jq_y + kq_z + q_w = {\rm\pmb{q}}_v + q_w ,\\ {\rm\pmb{q}}_v = iq_x + jq_y + kq_z = (q_x, q_y, q_z),\\ i^2 = j^2 = k^2 = −1, jk = −kj = i, ki = −ik = j, ij = −ji = k. \end{aligned} \tag{4.31} qqq^=(qqqv,qw)=iqx+jqy+kqz+qw=qqqv+qw,qqqv=iqx+jqy+kqz=(qx,qy,qz),i2=j2=k2=1,jk=kj=i,ki=ik=j,ij=ji=k.(4.31)

变量 q w q_w qw称为四元数 q ^ \hat{\rm\pmb{q}} qqq^的实部。虚部是 q v {\rm\pmb{q}}_v qqqv,而 i i i j j j k k k称为虚数单位。

对于虚部 q v {\rm\pmb{q}}_v qqqv,我们可以使用所有法向量运算,例如加法、缩放、点积、叉积等。使用四元数的定义,推导出两个四元数 q ^ \hat{\rm\pmb{q}} qqq^ r ^ \hat{\rm\pmb{r}} rrr^之间的乘法运算,如下所示。请注意,虚数单位的乘法是不可交换的。

乘 法 : q ^ r ^ = ( i q x + j q y + k q z + q w ) ( i r x + j r y + k r z + r w ) = i ( q y r z − q z r y + r w q x + q w r x ) + j ( q z r x − q x r z + r w q y + q w r y ) + k ( q x r y − q y r x + r w q z + q w r z ) + q w r w − q x r x − q y r y − q z r z = ( q v × r v + r w q v + q w r v , q w r w − q v ⋅ r v ) (4.32) \begin{aligned} \pmb{乘法:} \hat{\rm\pmb{q}}\hat{\rm\pmb{r}} &= (iq_x + jq_y + kq_z + q_w )(ir_x + jr_y + kr_z + r_w)\\ &= i(q_yr_z−q_zr_y + r_wq_x + q_wr_x)\\ &\quad + j(q_zr_x − q_xr_z + r_wq_y + q_wr_y )\\ &\quad + k(q_xr_y − q_yr_x + r_wq_z + q_wr_z )\\ &\quad + q_wr_w − q_xr_x − q_yr_y − q_zr_z\\ &= ({\rm\pmb{q}}_v \times {\rm\pmb{r}}_v + r_w{\rm\pmb{q}}_v + q_w{\rm\pmb{r}}_v, q_wr_w − {\rm\pmb{q}}_v \cdot {\rm\pmb{r}}_v ) \end{aligned} \tag{4.32} :乘法::qqq^rrr^=(iqx+jqy+kqz+qw)(irx+jry+krz+rw)=i(qyrzqzry+rwqx+qwrx)+j(qzrxqxrz+rwqy+qwry)+k(qxryqyrx+rwqz+qwrz)+qwrwqxrxqyryqzrz=(qqqv×rrrv+rwqqqv+qwrrrv,qwrwqqqvrrrv)(4.32)

从这个方程可以看出,我们同时使用叉积和点积来计算两个四元数的乘法。

除了四元数的定义,还需要加法、共轭、范数和单位元素的定义:

加 法 : q ^ + r ^ = ( q v , q w ) + ( r v , r w ) = ( q v + r v , q w + r w ) 共 轭 : q ^ ∗ = ( q v , q w ) ∗ = ( − q v , q w ) 范 数 : n ( q ^ ) = q ^ q ^ ∗ = q ^ ∗ q ^ = q v ⋅ q v + q w 2 = q x 2 + q y 2 + q z 2 + q w 2 单 位 元 素 : i ^ = ( 0 , 1 ) (4.33) \begin{aligned} \pmb{加法:} \hat{\rm\pmb{q}} + \hat{\rm\pmb{r}} = ({\rm\pmb{q}}_v, q_w) + ({\rm\pmb{r}}_v ,r_w ) = ({\rm\pmb{q}}_v + {\rm\pmb{r}}_v, q_w + r_w ) \\ \pmb{共轭:} \hat{\rm\pmb{q}}^∗ = ({\rm\pmb{q}}_v, q_w)^∗ = (−{\rm\pmb{q}}_v, q_w) \\ \pmb{范数:} n(\hat{\rm\pmb{q}}) = \sqrt{\hat{\rm\pmb{q}}\hat{\rm\pmb{q}}^*} = \sqrt{\hat{\rm\pmb{q}}^*\hat{\rm\pmb{q}}} = \sqrt{{\rm\pmb{q}}_v \cdot {\rm\pmb{q}}_v + q_w^2}\\ = \sqrt{q^2_x + q^2_y + q^2_z + q^2_w} \\ \pmb{单位元素:} \hat{\rm\pmb{i}} = (\rm\pmb{0},1) \\ \end{aligned} \tag{4.33} :加法::qqq^+rrr^=(qqqv,qw)+(rrrv,rw)=(qqqv+rrrv,qw+rw):共轭::qqq^=(qqqv,qw)=(qqqv,qw):范数::n(qqq^)=qqq^qqq^ =qqq^qqq^ =qqqvqqqv+qw2 =qx2+qy2+qz2+qw2 :单位元素::iii^=(000,1)(4.33)

n ( q ^ ) = q ^ q ^ ∗ n(\hat{\rm\pmb{q}}) = \sqrt{\hat{\rm\pmb{q}}\hat{\rm\pmb{q}}^*} n(qqq^)=qqq^qqq^ 被简化时(结果如上所示),虚部抵消,只剩下实部。范数有时表示为 ∣ ∣ q ^ ∣ = n ( q ^ ) ||\hat{\rm\pmb{q}}| = n(\hat{\rm\pmb{q}}) qqq^=n(qqq^)[1105]。上面的结果是可以导出一个乘法逆,用 q ^ − 1 {\hat{\rm\pmb{q}}}^{-1} qqq^1表示。方程 q ^ − 1 q ^ = q ^ − 1 q ^ = 1 {\hat{\rm\pmb{q}}}^{-1}{\hat{\rm\pmb{q}}}={\hat{\rm\pmb{q}}}^{-1}{\hat{\rm\pmb{q}}}=1 qqq^1qqq^=qqq^1qqq^=1对逆必须成立(这对于乘法逆是常见的)。我们从范数的定义推导出一个公式:
n ( q ^ ) 2 = q ^ q ^ ∗ ⟺ q ^ q ^ ∗ n ( q ^ ) 2 = 1 (4.34) {n(\hat{\rm\pmb{q}})}^2 = \hat{\rm\pmb{q}}\hat{\rm\pmb{q}}^* \Longleftrightarrow \frac{\hat{\rm\pmb{q}}\hat{\rm\pmb{q}}^*}{{n(\hat{\rm\pmb{q}})}^2} = 1 \tag{4.34} n(qqq^)2=qqq^qqq^n(qqq^)2qqq^qqq^=1(4.34)

这给出了乘法逆,如下所示:
逆 : q ^ − 1 = 1 n ( q ^ ) 2 q ^ ∗ \pmb{逆:} {\hat{\rm\pmb{q}}}^{-1} = \frac{1}{{n(\hat{\rm\pmb{q}})}^2}\hat{\rm\pmb{q}}^* :::qqq^1=n(qqq^)21qqq^

逆的公式使用了标量乘法,可以从方程4.3.1中看到的乘法推导出这个运算: s q ^ = ( 0 , s ) ( q v , q w ) = ( s q v , s q w ) s{\hat{\rm\pmb{q}}} = (\pmb{0}, s)({\rm\pmb{q}}_v, q_w) = (s{\rm\pmb{q}}_v, sq_w) sqqq^=(000,s)(qqqv,qw)=(sqqqv,sqw), 并且 q ^ s = ( q v , q w ) ( 0 , s ) = ( s q v , s q w ) {\hat{\rm\pmb{q}}}s = ({\rm\pmb{q}}_v, q_w)(\pmb{0}, s) = (s{\rm\pmb{q}}_v, sq_w) qqq^s=(qqqv,qw)(000,s)=(sqqqv,sqw)。这意味着标量乘法是可交换的: s q ^ = q ^ s = ( s q v , s q w ) s{\hat{\rm\pmb{q}}}={\hat{\rm\pmb{q}}}s = (s{\rm\pmb{q}}_v, sq_w) sqqq^=qqq^s=(sqqqv,sqw)

以下规则集合很容易从定义中推导出来:
共 轭 规 则 : ( q ^ ∗ ) ∗ = q ^ ( q ^ + r ^ ) ∗ = q ^ ∗ + r ^ ∗ ( q ^ r ^ ) ∗ = r ^ ∗ q ^ ∗ (4.36) \begin{aligned} \pmb{共轭规则:} (\hat{\rm\pmb{q}}^*)^* = \hat{\rm\pmb{q}} \\ (\hat{\rm\pmb{q}} + \hat{\rm\pmb{r}})^* = \hat{\rm\pmb{q}}^* + \hat{\rm\pmb{r}}^* \\ (\hat{\rm\pmb{q}}\hat{\rm\pmb{r}})^* = \hat{\rm\pmb{r}}^*\hat{\rm\pmb{q}}^* \end{aligned} \tag{4.36} :共轭规则::(qqq^)=qqq^(qqq^+rrr^)=qqq^+rrr^(qqq^rrr^)=rrr^qqq^(4.36)

范 数 规 则 : n ( q ^ ∗ ) = n ( q ^ ) n ( q ^ r ^ ) = n ( q ^ ) n ( r ^ ) (4.37) \begin{aligned} \pmb{范数规则:} n(\hat{\rm\pmb{q}}^*) = n(\hat{\rm\pmb{q}}) \\ n(\hat{\rm\pmb{q}}\hat{\rm\pmb{r}}) = n(\hat{\rm\pmb{q}})n(\hat{\rm\pmb{r}}) \\ \end{aligned} \tag{4.37} :范数规则::n(qqq^)=n(qqq^)n(qqq^rrr^)=n(qqq^)n(rrr^)(4.37)

乘 法 法 则 : 线 性 度 : p ^ ( s q ^ + t r ^ ) = s p ^ q ^ + t p ^ r ^ ( s p ^ + t q ^ ) r ^ = s p ^ r ^ + t q ^ r ^ 结 合 性 : p ^ ( q ^ r ^ ) = ( p ^ q ^ ) r ^ (4.38) \begin{aligned} \pmb{乘法法则:}\\ \pmb{线性度:} \hat{\rm\pmb{p}}(s\hat{\rm\pmb{q}} + t\hat{\rm\pmb{r}}) &= s\hat{\rm\pmb{p}}\hat{\rm\pmb{q}} + t\hat{\rm\pmb{p}}\hat{\rm\pmb{r}} \\ (s\hat{\rm\pmb{p}} + t\hat{\rm\pmb{q}})\hat{\rm\pmb{r}} &= s\hat{\rm\pmb{p}}\hat{\rm\pmb{r}} + t\hat{\rm\pmb{q}}\hat{\rm\pmb{r}} \\ \pmb{结合性:} \hat{\rm\pmb{p}}(\hat{\rm\pmb{q}}\hat{\rm\pmb{r}}) &= (\hat{\rm\pmb{p}}\hat{\rm\pmb{q}})\hat{\rm\pmb{r}} \end{aligned} \tag{4.38} :乘法法则::线线性度:线ppp^(sqqq^+trrr^)(sppp^+tqqq^)rrr^结合性:ppp^(qqq^rrr^)=sppp^qqq^+tppp^rrr^=sppp^rrr^+tqqq^rrr^=(ppp^qqq^)rrr^(4.38)

单位四元数 q ^ = ( q v , q w ) \hat{\rm\pmb{q}} = ({\rm\pmb{q}}_v, q_w) qqq^=(qqqv,qw)使得 n ( q ^ ) = 1 n(\hat{\rm\pmb{q}}) = 1 n(qqq^)=1。由此可知 q ^ \hat{\rm\pmb{q}} qqq^可写作:
q ^ = ( s i n ϕ u q , c o s ϕ ) = s i n ϕ u q + c o s ϕ (4.39) \hat{\rm\pmb{q}} = ({\rm{sin}}{\phi}{\rm\pmb{u}}_q, {\rm{cos}}{\phi}) = {\rm{sin}}{\phi}{\rm\pmb{u}}_q + {\rm{cos}}{\phi} \tag{4.39} qqq^=(sinϕuuuq,cosϕ)=sinϕuuuq+cosϕ(4.39)

对于某个三维向量 u q {\rm\pmb{u}}_q uuuq,使得 ∣ ∣ u q ∣ ∣ = 1 ||{\rm\pmb{u}}_q|| = 1 uuuq=1,因为
n ( q ^ ) = n ( s i n ϕ u q , c o s ϕ ) = s i n 2 ϕ ( u q ⋅ u q ) + c o s 2 ϕ = s i n 2 ϕ + c o s 2 ϕ = 1 (4.40) n(\hat{\rm\pmb{q}}) = n({\rm{sin}}{\phi}{\rm\pmb{u}}_q, {\rm{cos}}{\phi}) = \sqrt{{\rm{sin}}^2{\phi}({\rm\pmb{u}}_q \cdot {\rm\pmb{u}}_q) + {\rm{cos}}^2{\phi}} \\ = \sqrt{{\rm{sin}}^2{\phi} + {\rm{cos}}^2{\phi}} \tag{4.40} = 1 n(qqq^)=n(sinϕuuuq,cosϕ)=sin2ϕ(uuuquuuq)+cos2ϕ =sin2ϕ+cos2ϕ =1(4.40)

当且仅当 u q ⋅ u q = 1 = ∣ ∣ u q ∣ ∣ 2 {\rm\pmb{u}}_q \cdot {\rm\pmb{u}}_q = 1 = ||{\rm\pmb{u}}_q||^2 uuuquuuq=1=uuuq2. 正如将在下一节中看到的,单位四元数非常适合以最有效的方式创建旋转和方向。但在此之前,会为单位四元数引入一些额外的操作。

对于复数,二维单位向量可以写成 c o s ϕ + i s i n ϕ = e i ϕ {\rm{cos}}{\phi} + i{\rm{sin}}{\phi} = e^{i\phi} cosϕ+isinϕ=eiϕ。 四元数的等价物是
q ^ = s i n ϕ u q + c o s ϕ = e ϕ u q (4.41) \hat{\rm\pmb{q}} = {\rm{sin}}{\phi}{\rm\pmb{u}}_q + {\rm{cos}}{\phi} = e^{\phi{\rm\pmb{u}}_q} \tag{4.41} qqq^=sinϕuuuq+cosϕ=eϕuuuq(4.41)

根据公式4.41,单位四元数的对数函数和幂函数为:
对 数 : l o g ( q ^ ) = l o g ( e ϕ u q ) = ϕ u q 指 数 : q ^ t = ( s i n ϕ u q + c o s ϕ ) t = e ϕ t u q = s i n ( ϕ t ) u q + c o s ( ϕ t ) (4.42) \begin{aligned} \pmb{对数:} {\rm{log}}(\hat{\rm\pmb{q}}) = {\rm{log}}(e^{\phi{\rm\pmb{u}}_q}) = \phi{\rm\pmb{u}}_q \\ \pmb{指数:} \hat{\rm\pmb{q}}^t = ({\rm{sin}}{\phi}{\rm\pmb{u}}_q + {\rm{cos}}{\phi}) ^ t = e^{{\phi}t{\rm\pmb{u}}_q} = {\rm{sin}}({\phi}t){\rm\pmb{u}}_q + {\rm{cos}}({\phi}t)\\ \end{aligned} \tag{4.42} :对数::log(qqq^)=log(eϕuuuq)=ϕuuuq:指数::qqq^t=(sinϕuuuq+cosϕ)t=eϕtuuuq=sin(ϕt)uuuq+cos(ϕt)(4.42)

4.3.2 四元数变换

我们现在将研究四元数集的一个子类,即单位长度的子类,称为单位四元数。关于单位四元数的最重要的事实是它们可以表示任何三维旋转,而且这种表示非常紧凑和简单。

现在我们将描述是什么使单位四元数对旋转和方向如此有用。首先,将点或向量的四个坐标 p = ( p x   p y   p z   p w ) T \rm\pmb{p} = (p_x\ p_y\ p_z\ p_w)^T ppp=(px py pz pw)T代入四元数 p ^ \hat{\rm\pmb{p}} ppp^的分量,并假设我们有一个单位四元数 q ^ = ( s i n ϕ u q , c o s ϕ ) \hat{\rm\pmb{q}} = ({\rm{sin}}{\phi}{\rm\pmb{u}}_q, {\rm{cos}}{\phi}) qqq^=(sinϕuuuq,cosϕ)。可以证明
q ^ p ^ q ^ − 1 (4.43) \hat{\rm\pmb{q}}\hat{\rm\pmb{p}}\hat{\rm\pmb{q}}^{-1} \tag{4.43} qqq^ppp^qqq^1(4.43)
p ^ \hat{\rm\pmb{p}} ppp^(以及点 p \rm\pmb{p} ppp)绕轴 u q {\rm\pmb{u}}_q uuuq旋转角度 2 ϕ 2\phi 2ϕ。注意,由于 q ^ \hat{\rm\pmb{q}} qqq^是一个单位四元数, q ^ − 1 = q ^ ∗ \hat{\rm\pmb{q}}^{-1} = \hat{\rm\pmb{q}}^{*} qqq^1=qqq^。参见图4.9。

Figure4.9

图4.9. 由单位四元数表示的旋转变换的图示, q ^ = ( s i n ϕ u q , c o s ϕ ) \hat{\rm\pmb{q}} = ({\rm{sin}}{\phi}{\rm\pmb{u}}_q, {\rm{cos}}{\phi}) qqq^=(sinϕuuuq,cosϕ)。变换围绕轴 u q {\rm\pmb{u}}_q uuuq旋转 2 ϕ 2\phi 2ϕ弧度。

q ^ \hat{\rm\pmb{q}} qqq^的任何非零实数倍数也表示相同的变换,这意味着 q ^ \hat{\rm\pmb{q}} qqq^ − q ^ -\hat{\rm\pmb{q}} qqq^表示相同的旋转。也就是说,取反轴 u q \rm\pmb{u}_q uuuq和实部 q w q_w qw会创建一个与原始四元数完全一样旋转的四元数。这也意味着从矩阵中提取四元数可以返回 q ^ \hat{\rm\pmb{q}} qqq^ − q ^ -\hat{\rm\pmb{q}} qqq^

给定两个单位四元数 q ^ \hat{\rm\pmb{q}} qqq^ r ^ \hat{\rm\pmb{r}} rrr^,首先应用 q ^ \hat{\rm\pmb{q}} qqq^再应用 r ^ \hat{\rm\pmb{r}} rrr^到四元数 p ^ \hat{\rm\pmb{p}} ppp^(可以解释为点 p {\rm\pmb{p}} ppp)的级联由公式 4.44 给出:

r ^ ( q ^ p ^ q ^ ∗ ) r ^ ∗ = ( r ^ q ^ ) p ^ ( r ^ q ^ ) ∗ = c ^ p ^ c ^ ∗ (4.44) \hat{\rm\pmb{r}}(\hat{\rm\pmb{q}}\hat{\rm\pmb{p}}\hat{\rm\pmb{q}}^{∗})\hat{\rm\pmb{r}}^{∗} = (\hat{\rm\pmb{r}}\hat{\rm\pmb{q}})\hat{\rm\pmb{p}}(\hat{\rm\pmb{r}}\hat{\rm\pmb{q}})^{∗} = \hat{\rm\pmb{c}}\hat{\rm\pmb{p}}\hat{\rm\pmb{c}}^{∗} \tag{4.44} rrr^(qqq^ppp^qqq^)rrr^=(rrr^qqq^)ppp^(rrr^qqq^)=ccc^ppp^ccc^(4.44)

这里, c ^ = r ^ q ^ \hat{\rm\pmb{c}} = \hat{\rm\pmb{r}}\hat{\rm\pmb{q}} ccc^=rrr^qqq^是单位四元数,表示单位四元数 q ^ \hat{\rm\pmb{q}} qqq^ r ^ \hat{\rm\pmb{r}} rrr^的级联。

矩阵转换

由于经常需要将几种不同的变换组合起来,而且大部分都是矩阵形式,因此需要一种方法将式4.43转化为矩阵。四元数 q ^ \hat{\rm\pmb{q}} qqq^可以转换为矩阵 M q \rm\pmb{M}^q MMMq,如公式4.45[1633,1634]所示:

M q = ( 1 − s ( q y 2 + q z 2 ) s ( q x q y − q w q z ) s ( q x q z + q w q y ) 0 s ( q x q y + q w q z ) 1 − s ( q x 2 + q z 2 ) s ( q y q z − q w q x ) 0 s ( q x q z − q w q y ) s ( q y q z + q w q x ) 1 − s ( q x 2 + q y 2 ) 0 0 0 0 1 ) (4.45) {\rm\pmb{M}}^q = \left( \begin{matrix} 1 − s(q^2_y + q^2_z) & s(q_xq_y − q_wq_z) & s(q_xq_z + q_wq_y) & 0\\ s(q_xq_y + q_wq_z ) & 1 − s(q^2_x + q^2_z ) & s(q_yq_z − q_wq_x ) & 0\\ s(q_xq_z − q_wq_y) & s(q_yq_z + q_wq_x ) & 1 − s(q^2_x + q^2_y) & 0\\ 0 & 0 & 0 & 1 \end{matrix} \right) \tag{4.45} MMMq=1s(qy2+qz2)s(qxqy+qwqz)s(qxqzqwqy)0s(qxqyqwqz)1s(qx2+qz2)s(qyqz+qwqx)0s(qxqz+qwqy)s(qyqzqwqx)1s(qx2+qy2)00001(4.45)

在这里,标量是 s = 2 / ( n ( q ^ ) ) 2 s = 2/(n(\hat{\rm\pmb{q}}))^2 s=2/(n(qqq^))2。 对于单位四元数,上式可简化为:
M q = ( 1 − 2 ( q y 2 + q z 2 ) 2 ( q x q y − q w q z ) 2 ( q x q z + q w q y ) 0 2 ( q x q y + q w q z ) 1 − 2 ( q x 2 + q z 2 ) 2 ( q y q z − q w q x ) 0 2 ( q x q z − q w q y ) 2 ( q y q z + q w q x ) 1 − 2 ( q x 2 + q y 2 ) 0 0 0 0 1 ) (4.46) {\rm\pmb{M}}^q = \left( \begin{matrix} 1 − 2(q^2_y + q^2_z) & 2(q_xq_y − q_wq_z) & 2(q_xq_z + q_wq_y) & 0\\ 2(q_xq_y + q_wq_z ) & 1 − 2(q^2_x + q^2_z ) & 2(q_yq_z − q_wq_x ) & 0\\ 2(q_xq_z − q_wq_y) & 2(q_yq_z + q_wq_x ) & 1 − 2(q^2_x + q^2_y) & 0\\ 0 & 0 & 0 & 1 \end{matrix} \right) \tag{4.46} MMMq=12(qy2+qz2)2(qxqy+qwqz)2(qxqzqwqy)02(qxqyqwqz)12(qx2+qz2)2(qyqz+qwqx)02(qxqz+qwqy)2(qyqzqwqx)12(qx2+qy2)00001(4.46)

一旦构造了四元数,就不需要计算三角函数,因此转换过程在实践中很有效率。

从正交矩阵 M q \rm\pmb{M}^q MMMq到单位四元数 q ^ \hat{\rm\pmb{q}} qqq^的逆转换要复杂一些。此过程的关键是与公式4.46中的矩阵的以下差异:
m 21 q − m 12 q = 4 q w q x m 02 q − m 20 q = 4 q w q y m 10 q − m 01 q = 4 q w q z (4.47) \begin{aligned} m^q_{21} − m^q_{12} = 4q_wq_x \\ m^q_{02} − m^q_{20} = 4q_wq_y \\ m^q_{10} − m^q_{01} = 4q_wq_z \\ \end{aligned} \tag{4.47} m21qm12q=4qwqxm02qm20q=4qwqym10qm01q=4qwqz(4.47)

这些方程的含义是,如果 q w q_w qw已知,则可以计算向量 v q {\rm\pmb{v}}_q vvvq的值,从而推导出 q ^ \hat{\rm\pmb{q}} qqq^ M q \rm\pmb{M}^q MMMq的迹由下式计算:
t r ( M q ) = 4 − 2 s ( q x 2 + q y 2 + q z 2 ) = 4 ( 1 − q x 2 + q y 2 + q z 2 q x 2 + q y 2 + q z 2 + q w 2 ) = 4 q w 2 q x 2 + q y 2 + q z 2 + q w 2 = 4 q w 2 ( n ( q ^ ) ) 2 (4.48) \begin{aligned} tr(\rm\pmb{M}^q) &= 4 - 2s(q^2_x + q^2_y + q^2_z) = 4(1-\frac{q^2_x + q^2_y + q^2_z}{q^2_x + q^2_y + q^2_z+q^2_w}) \\ &= \frac{4q^2_w}{q^2_x + q^2_y + q^2_z+q^2_w} = \frac{4q^2_w}{(n(\hat{\rm\pmb{q}}))^2} \end{aligned} \tag{4.48} tr(MMMq)=42s(qx2+qy2+qz2)=4(1qx2+qy2+qz2+qw2qx2+qy2+qz2)=qx2+qy2+qz2+qw24qw2=(n(qqq^))24qw2(4.48)

对于单位四元数来说,可得出以下转换:
q w = 1 2 t r ( M q ) q x = ( m 21 q − m 12 q ) 4 q w q y = ( m 02 q − m 20 q ) 4 q w q z = ( m 10 q − m 01 q ) 4 q w (4.49) \begin{aligned} q_w &= \frac{1}{2}\sqrt{tr({\rm\pmb{M}}^q)} \\ q_x &= \frac{(m^q_{21} − m^q_{12})}{4q_w} \\ q_y &= \frac{(m^q_{02} − m^q_{20})}{4q_w} \\ q_z &= \frac{(m^q_{10} − m^q_{01})}{4q_w} \\ \end{aligned} \tag{4.49} qwqxqyqz=21tr(MMMq) =4qw(m21qm12q)=4qw(m02qm20q)=4qw(m10qm01q)(4.49)

为了有一个数值稳定的程序[1634],小数除法应该被避免。因此,首先设置 t = q w 2 − q x 2 − q y 2 − q z 2 t = q^2_w − q^2_x − q^2_y − q^2_z t=qw2qx2qy2qz2,由此得出:
m 00 = t + 2 q x 2 m 11 = t + 2 q y 2 m 22 = t + 2 q z 2 u = m 00 + m 11 + m 22 = t + 2 q w 2 (4.50) \begin{aligned} m_{00} &= t + 2q^2_x \\ m_{11} &= t + 2q^2_y \\ m_{22} &= t + 2q^2_z \\ u &= m_{00} + m_{11} + m_{22} = t + 2q^2_w\\ \end{aligned} \tag{4.50} m00m11m22u=t+2qx2=t+2qy2=t+2qz2=m00+m11+m22=t+2qw2(4.50)

这反过来意味着 m 00 m_{00} m00 m 11 m_{11} m11 m 22 m_{22} m22 u u u中的最大值,确定了 q x q_x qx q y q_y qy q z q_z qz q w q_w qw中最大的。如果 q w q_w qw最大,则使用公式4.49导出四元数。否则,我们注意到以下内容成立:
4 q x 2 = + m 00 − m 11 − m 22 + m 33 4 q y 2 = − m 00 + m 11 − m 22 + m 33 4 q z 2 = − m 00 − m 11 + m 22 + m 33 4 q w 2 = t r ( M q ) (4.51) \begin{aligned} 4q^2_x &= +m_{00} − m_{11} − m_{22} + m_{33} \\ 4q^2_y &= −m_{00} + m_{11} − m_{22} + m_{33} \\ 4q^2_z &= −m_{00} − m_{11} + m_{22} + m_{33} \\ 4q^2_w &= tr({\rm\pmb{M}}^q)\\ \end{aligned} \tag{4.51} 4qx24qy24qz24qw2=+m00m11m22+m33=m00+m11m22+m33=m00m11+m22+m33=tr(MMMq)(4.51)

然后使用上述适当方程计算 q x q_x qx q y q_y qy q z q_z qz中的最大值,然后使用方程4.47计算 q ^ \hat{\rm\pmb{q}} qqq^的其余分量。Schüler[1588]提出了一种无分支但使用四个平方根的变体。

球面线性插值

球面线性插值是一种运算,在给定两个单位四元数 q ^ \hat{\rm\pmb{q}} qqq^ r ^ \hat{\rm\pmb{r}} rrr^以及参数 t ∈ [ 0 , 1 ] t∈[0,1] t[0,1]的情况下,计算插值四元数。例如,这对于动画对象很有用。它对于插值相机方向没有用,因为相机的“向上”矢量在插值过程中可能会倾斜,通常是一种干扰效果。

此运算的代数形式由复合四元数 s ^ \hat{\rm\pmb{s}} sss^表示,如下所示:
s ^ ( q ^ , r ^ , t ) = ( r ^ q ^ − 1 ) t q ^ (4.52) \hat{\rm\pmb{s}}(\hat{\rm\pmb{q}},\hat{\rm\pmb{r}},t) = (\hat{\rm\pmb{r}}\hat{\rm\pmb{q}}^{−1})^t\hat{\rm\pmb{q}} \tag{4.52} sss^(qqq^,rrr^,t)=(rrr^qqq^1)tqqq^(4.52)

但是,对于软件实现,以下形式更合适,其中slerp代表球面线性插值:
s ^ ( q ^ , r ^ , t ) = s l e r p ( q ^ , r ^ , t ) = s i n ( ϕ ( 1 − t ) ) s i n ϕ q ^ + s i n ( ϕ t ) s i n ϕ r ^ (4.53) \hat{\rm\pmb{s}}(\hat{\rm\pmb{q}},\hat{\rm\pmb{r}},t) = slerp(\hat{\rm\pmb{q}},\hat{\rm\pmb{r}},t) = \frac{sin(\phi(1-t))}{sin\phi}\hat{\rm\pmb{q}} + \frac{sin(\phi t)}{sin\phi}\hat{\rm\pmb{r}} \tag{4.53} sss^(qqq^,rrr^,t)=slerp(qqq^,rrr^,t)=sinϕsin(ϕ(1t))qqq^+sinϕsin(ϕt)rrr^(4.53)

为了计算这个方程所需的φ,可以使用以下式子: c o s ϕ = q x r x + q y r y + q z r z + q w r w cos\phi = q_xr_x + q_yr_y + q_zr_z + q_wr_w cosϕ=qxrx+qyry+qzrz+qwrw[325]。对于 t ∈ [ 0 , 1 ] t∈[0,1] t[0,1],slerp函数计算(唯一的 2 ^2 2)插值四元数,它们共同构成四维单位球面上从 q ^ ( t = 0 ) \hat{\rm\pmb{q}}(t = 0) qqq^(t=0) r ^ ( t = 1 ) \hat{\rm\pmb{r}}(t = 1) rrr^(t=1)的最短弧。圆弧位于由 q ^ \hat{\rm\pmb{q}} qqq^, r ^ \hat{\rm\pmb{r}} rrr^和原点给出的平面与四维单位球面的交点形成的圆上。如图 4.10 所示。计算出的旋转四元数以恒定速度绕固定轴旋转。像这样的曲线具有恒定的速度,因此加速度为零,称为测地曲线[229]。过原点的平面与球面的交点在球面上形成一个大圆,这个圆的一部分称为大圆弧。

Figure4.10

图4.10. 单位四元数表示为单位球面上的点。函数slerp用于四元数之间的插值,插值的路径是球体上的一个大圆弧。请注意,从 q ^ 1 \hat{\rm\pmb{q}}_1 qqq^1 q ^ 2 \hat{\rm\pmb{q}}_2 qqq^2和从 q ^ 1 \hat{\rm\pmb{q}}_1 qqq^1 q ^ 3 \hat{\rm\pmb{q}}_3 qqq^3 q ^ 2 \hat{\rm\pmb{q}}_2 qqq^2的插值不是一回事,即使它们到达相同的方向。

slerp函数非常适合在两个方位之间进行插值,并且有良好的效果(固定轴,恒速)。使用多个欧拉角进行插值时,情况并非如此。实际上,直接计算slerp是一项涉及调用三角函数的昂贵操作。Malysau[1114]讨论了将四元数集成到渲染管线中。他指出,当不使用slerp而只是在像素着色器中对四元数进行归一化时,对于90度角,三角形方向的误差最大为 4度。光栅化三角形时,此误差率是可以接受的。Li[1039, 1040]提供了更快的增量方法来计算slerps,并且不会牺牲任何准确性。Eberly[406]提出了一种仅使用加法和乘法计算slerps的快速技术。

当有两个以上的方向时,比如 q ^ 0 , q ^ 1 , . . . , q ^ n \hat{\rm\pmb{q}}_0,\hat{\rm\pmb{q}}_1,...,\hat{\rm\pmb{q}}_n qqq^0,qqq^1,...,qqq^n,并且我们想要从 q ^ 0 \hat{\rm\pmb{q}}_0 qqq^0 q ^ 1 \hat{\rm\pmb{q}}_1 qqq^1 q ^ 2 \hat{\rm\pmb{q}}_2 qqq^2,依此类推直到 q ^ n − 1 \hat{\rm\pmb{q}}_{n-1} qqq^n1,可以直接使用slerp。现在,当我们接近 q ^ i \hat{\rm\pmb{q}}_i qqq^i时,我们将使用 q ^ i − 1 \hat{\rm\pmb{q}}_{i-1} qqq^i1 q ^ i \hat{\rm\pmb{q}}_i qqq^i作为 slerp 的参数。通过 q ^ i \hat{\rm\pmb{q}}_i qqq^i后,我们将使用 q ^ i \hat{\rm\pmb{q}}_i qqq^i q ^ i + 1 \hat{\rm\pmb{q}}_{i+1} qqq^i+1作为 slerp 的参数。这将导致方向插值中出现突然的抖动,如图4.10所示。这类似于当点被线性插值时发生的情况;参见第720页图17.3的右上部分。有些读者可能希望在阅读第17章中的样条曲线后重新阅读以下段落。

更好的插值方法是使用某种样条。我们在 q ^ i \hat{\rm\pmb{q}}_i qqq^i q ^ i + 1 \hat{\rm\pmb{q}}_{i+1} qqq^i+1之间引入了四元数 a ^ i \hat{\rm\pmb{a}}_i aaa^i a ^ i + 1 \hat{\rm\pmb{a}}_{i+1} aaa^i+1。球面三次插值可以在四元数 q ^ i \hat{\rm\pmb{q}}_i qqq^i a ^ i \hat{\rm\pmb{a}}_i aaa^i a ^ i + 1 \hat{\rm\pmb{a}}_{i+1} aaa^i+1 q ^ i + 1 \hat{\rm\pmb{q}}_{i+1} qqq^i+1的集合内定义。令人惊讶的是,这些额外的四元数计算如下[404] 3 ^3 3
a ^ i = q ^ i   e x p   [ − l o g ( q ^ i − 1 q ^ i − 1 ) + l o g ( q ^ i − 1 q ^ i + 1 ) 4 ] (4.54) \hat{\rm\pmb{a}}_i = \hat{\rm\pmb{q}}_i \, {\rm{exp}} \, [-\frac{{\rm{log}}(\hat{\rm\pmb{q}}^{-1}_{i}\hat{\rm\pmb{q}}_{i-1})+{\rm{log}}(\hat{\rm\pmb{q}}^{-1}_{i}\hat{\rm\pmb{q}}_{i+1})}{4}]\tag{4.54} aaa^i=qqq^iexp[4log(qqq^i1qqq^i1)+log(qqq^i1qqq^i+1)](4.54)

通过三次样条平滑算法, q ^ i \hat{\rm\pmb{q}}_i qqq^i a ^ i \hat{\rm\pmb{a}}_i aaa^i用来对四元数进行球面插值,如公式4.55所示:
s q u a d ( q ^ i , q ^ i + 1 , a ^ i , a ^ i + 1 , t ) = s l e r p ( s l e r p ( q ^ i , q ^ i + 1 , t ) , s l e r p ( a ^ i , a ^ i + 1 , t ) , 2 t ( 1 − t ) ) (4.55) {\rm{squad}}(\hat{\rm\pmb{q}}_i,\hat{\rm\pmb{q}}_{i+1},\hat{\rm\pmb{a}}_i,\hat{\rm\pmb{a}}_{i+1},t) = \\ {\rm{slerp}}({\rm{slerp}}(\hat{\rm\pmb{q}}_i,\hat{\rm\pmb{q}}_{i+1},t),{\rm{slerp}}(\hat{\rm\pmb{a}}_i,\hat{\rm\pmb{a}}_{i+1},t),2t(1 − t)) \tag{4.55} squad(qqq^i,qqq^i+1,aaa^i,aaa^i+1,t)=slerp(slerp(qqq^i,qqq^i+1,t),slerp(aaa^i,aaa^i+1,t),2t(1t))(4.55)

从上面可以看出,squad函数是使用slerp从同样的球面插值构建的(第17.1.1节有关点的重复线性插值的信息)。插值将通过初始方向 q ^ i , i ∈ [ 0 , . . . , n − 1 ] \hat{\rm\pmb{q}}_i,i ∈ [0,...,n − 1] qqq^i,i[0,...,n1],但不通过 a ^ i \hat{\rm\pmb{a}}_i aaa^i——这些用于指示初始方向的切线方向。

从一个向量到另一个向量的旋转

一个常见的操作是通过尽可能最短的路径从一个方向 s \rm\pmb{s} sss转换到另一个方向 t \rm\pmb{t} ttt。四元数的数学运算极大地简化了这个过程,并显示了四元数与这种表示的密切关系。首先,将 s \rm\pmb{s} sss t \rm\pmb{t} ttt归一化。然后计算单位旋转轴,称为 u \rm\pmb{u} uuu,计算为 u = ( s × t ) / ∣ ∣ s × t ∣ ∣ \rm\pmb{u} = (\pmb{s} × \pmb{t})/||\pmb{s} × \pmb{t}|| uuu=(sss×ttt)/sss×ttt。 接下来, e = s ⋅ t = c o s ( 2 ϕ ) e = {\rm\pmb{s}} · {\rm\pmb{t}} = cos(2\phi) e=sssttt=cos(2ϕ) ∣ ∣ s × t ∣ ∣ = s i n ( 2 ϕ ) ||{\rm\pmb{s}} × {\rm\pmb{t}}|| = sin(2\phi) sss×ttt=sin(2ϕ),其中 2 ϕ 2\phi 2ϕ s {\rm\pmb{s}} sss t {\rm\pmb{t}} ttt之间的角度。表示从 s \rm\pmb{s} sss t \rm\pmb{t} ttt的旋转的四元数是 q ^ = ( s i n ϕ u , c o s ϕ ) \hat{\rm\pmb{q}} = (sin{\phi}{\rm\pmb{u}}, cos{\phi}) qqq^=(sinϕuuu,cosϕ)。事实上,使用半角关系和三角恒等式简化 q ^ = ( s i n ϕ s i n 2 ϕ ( s × t ) , c o s ϕ ) \hat{\rm\pmb{q}} = (\frac{sin{\phi}}{sin2{\phi}}({\rm\pmb{s}}×{\rm\pmb{t}}), cos{\phi}) qqq^=(sin2ϕsinϕ(sss×ttt),cosϕ),可得出[1197]:
q ^ = ( q v , q w ) = ( 1 2 ( 1 + e ) ( s × t ) , 2 ( 1 + e ) 2 ) (4.56) \hat{\rm\pmb{q}} = ({\rm\pmb{q}}_v,q_w) = (\frac{1}{\sqrt{2(1+e)}}({\rm\pmb{s}}×{\rm\pmb{t}}), \frac{\sqrt{2(1+e)}}{2}) \tag{4.56} qqq^=(qqqv,qw)=(2(1+e) 1(sss×ttt),22(1+e) )(4.56)

以这种方式直接生成四元数(相对于标准化叉积 s × t {\rm\pmb{s}}×{\rm\pmb{t}} sss×ttt)避免了当 s {\rm\pmb{s}} sss t {\rm\pmb{t}} ttt指向几乎相同的方向时的数值不稳定[1197]。当 s {\rm\pmb{s}} sss t {\rm\pmb{t}} ttt指向相反的方向时,两种方法都会出现稳定性问题,因为发生了除以零的情况。当检测到这种特殊情况时,任何垂直于 s {\rm\pmb{s}} sss的旋转轴都可以用来旋转到 t {\rm\pmb{t}} ttt

有时我们需要从 s {\rm\pmb{s}} sss t {\rm\pmb{t}} ttt旋转的矩阵表示。在对等式4.46进行一些代数和三角简化后,旋转矩阵变为[1233]:
R ( s , t ) = ( e + h v x 2 h v x v y − v z h v x v z + v y 0 h v x v y + v z e + h v y 2 h v y v z − v x 0 h v x v z − v y h v y v z + v x e + h v z 2 0 0 0 0 1 ) (4.57) {\rm\pmb{R}}({\rm\pmb{s}}, {\rm\pmb{t}}) = \left( \begin{matrix} e + hv_x^2 & hv_xv_y − v_z & hv_xv_z + v_y & 0 \\ hv_xv_y + v_z & e + hv_y^2 & hv_yv_z − v_x & 0 \\ hv_xv_z − v_y & hv_yv_z + v_x & e + hv_z^2 & 0 \\ 0 & 0 & 0 & 1 \\ \end{matrix} \right) \tag{4.57} RRR(sss,ttt)=e+hvx2hvxvy+vzhvxvzvy0hvxvyvze+hvy2hvyvz+vx0hvxvz+vyhvyvzvxe+hvz200001(4.57)

在这个等式中,我们使用了以下中间计算:
v = s × t e = c o s ( 2 ϕ ) = s ⋅ t h = 1 − c o s ( 2 ϕ ) s i n 2 ( 2 ϕ ) = 1 − e v ⋅ v = 1 1 + e (4.58) \begin{aligned} {\rm\pmb{v}} &= {\rm\pmb{s}} × {\rm\pmb{t}} \\ e &= cos(2{\phi}) = {\rm\pmb{s}} \cdot {\rm\pmb{t}} \\ h &= \frac{1-cos(2\phi)}{sin^2(2\phi)} = \frac{1-e}{{\rm\pmb{v}} \cdot {\rm\pmb{v}}} = \frac{1}{1+e}\\ \end{aligned} \tag{4.58} vvveh=sss×ttt=cos(2ϕ)=sssttt=sin2(2ϕ)1cos(2ϕ)=vvvvvv1e=1+e1(4.58)

可以看出,由于简化,所有平方根和三角函数都消失了,因此这是创建矩阵的有效方法。请注意,公式4.57的结构类似于公式4.30的结构,并注意后一种形式如何不需要三角函数。

请注意,当 s {\rm\pmb{s}} sss t {\rm\pmb{t}} ttt平行或接近平行时必须小心,因为这时 ∣ ∣ s × t ∣ ∣ ≈ 0 ||{\rm\pmb{s}} × {\rm\pmb{t}}|| ≈ 0 sss×ttt0。如果 ϕ ≈ 0 \phi ≈ 0 ϕ0,那么我们可以返回单位矩阵。然而,如果 2 ϕ ≈ π 2\phi ≈ \pi 2ϕπ,那么我们可以绕任意轴旋转 π \pi π弧度。该轴可以是 s {\rm\pmb{s}} sss和任何其他不平行于 s {\rm\pmb{s}} sss的向量的叉积(第4.2.4节)。Möller和Hughes使用Householder矩阵以不同的方式处理这种特殊情况[1233]。


1 ^1 1公平地说,Robinson[1502]在1958年使用四元数进行刚体模拟。
2 ^2 2当且仅当 q ^ \hat{\rm\pmb{q}} qqq^ r ^ \hat{\rm\pmb{r}} rrr^不相反。
3 ^3 3Shoemake[1633]给出了另一个推导。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

charlee44

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值