四元数、变换矩阵、欧拉角、轴角的转换关系详解

描述空间变换通常有四种描述方式,分别是四元数、变换矩阵、欧拉角、轴角,探讨这四种方法之间的关系。大致的关系如图:

轴角

轴角一种几何描述方法。轴角定义了一个转动轴和转动角,沿着转动轴方向逆时针旋转为转动正方向,具体如下图:

θ=θe

其中向量e为转轴,模长为θ角。

欧拉角

欧拉角就是物体绕坐标系三个坐标轴(x,y,z轴)的旋转角度。由于涉及到坐标系,学习SLAM的应该会经常遇到全局坐标系和局部坐标系,因此,根据不同的坐标系以及分解的顺序不同,欧拉角表达具有多样性,根据坐标系的不同一般分为两种情况:

1,静态:即绕世界(全局)坐标系三个轴的旋转,由于物体旋转过程中坐标轴保持静止,所以称为静态。

2,动态:即绕物体(局部)坐标系三个轴的旋转,由于物体旋转过程中坐标轴随着物体做相同的转动,所以称为动态。

在相同坐标系下,物体的任意旋转都可分解为绕三个坐标轴的旋转,如下图,但是因为分解的顺序不同,表达的方式也不同,总共有12种。

Proper Euler angles (z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y)

Tait–Bryan angles (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z)

它的优点是任意的三个轴都可以都可以当做旋转轴,不一定是笛卡尔坐标系;容易使用,而且比较直观,在我们检测估计的旋转角度对不对的时候一般把旋转矩阵转成欧拉角。但是存在缺点就是表达的方式不唯一,两个角度之间求插值很困难。

变换矩阵

变换矩阵在图形学和多视图几何上用的比较多,常用的有旋转,平移和缩放等。

而我们所用到的空间变换中的旋转矩阵如下:

四元数与轴角的关系如下:

其中轴角为angle=angle*e(x,y,z),四元数为

四元数与变换矩阵关系如下:

四元数转旋转矩阵为:

假设

则旋转矩阵转四元数为:

这里面在实际工程中会出现一个问题,就是旋转矩阵转四元数的时候采用除法的方式,这会导致数值不稳定,从而导致的精度变差,具体可以参考《Real Time Rendering》。

四元数与欧拉角

四元数转欧拉角为:

而欧拉角转四元数为:

轴角与变换矩阵关系

其中

欧拉角与轴角

其中

欧拉角与变换矩阵

欧拉角转变换矩阵关系如下表

其中

假设

则旋转矩阵转欧拉角为:

好了大概就这些了,具体到工程中为了计算精度和速度等原因,会有很多变形的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值