参考:
https://www.cnblogs.com/jerry323/p/9097264.html
一共有两个机器人,一号和二号。
一号位姿 q1 = [0.35, 0.2, 0.3, 0.1],t1=[0.3, 0.1, 0.1]。
二号位姿 q2=[-0.5, 0.4, -0.1, 0.2], t2=[-0.1, 0.5, 0.3]。
某点在一号坐标系下坐标为p=[0.5, 0, 0.2]。求p在二号坐标系下的坐标。
假设在世界坐标系中p点的坐标为P。
用四元数做旋转则有(在Eigen中四元数旋转为q×v(左乘),数学中则为q×v×q^-1),进行世界坐标到机器人坐标的坐标变换:
- q1 × P + t1 = p1
- q2 × P + t2 = p2
两式联立消除P,得到:
p2 = q2 × q1^-1 × (p1 - t1) + t2
#include <iostream>
using namespace std;
#include <eigen3/Eigen/Core>
#include <eigen3/Eigen/Geometry>
int main()
{
//四元数
Eigen::Quaterniond q1 = Eigen::Quaterniond(0.35, 0.2, 0.3, 0.1).normalized();
Eigen::Quaterniond q2 = Eigen::Quaterniond(-0.5, 0.4, -0.1, 0.2).normalized();
//平移向量
Eigen::Vector3d t1 = Eigen::Vector3d(0.3, 0.1, 0.1);
Eigen::Vector3d t2 = Eigen::Vector3d(-0.1, 0.5, 0.3);
//目标向量
Eigen::Vector3d p1 = Eigen::Vector3d(0.5, 0, 0.2);
Eigen::Vector3d p2;
//打印输出
// cout << q1.coeffs() << "\n"
// << q2.coeffs() << "\n"
// << t1.transpose() << "\n"
// << t2.transpose() << endl;
//四元数求解
p2 = q2 * q1.inverse() * (p1 - t1) + t2;
cout << p2.transpose() << endl;
}
记住!!!
坐标系变换是右乘!!!!!
坐标变换是左乘!!!!!
四元数既可以表示点变换,也可以表示系变换,关键看你选择怎么用。
总结
通过代码可以发现,,若A在B中的位姿是(ax, ay, az, aw)那么,首先w项优先
Eigen::Quaterniond(aw, ax, ay, az).normalized();
其次,获得B到A的坐标变换。