YOLOv5的低照度场景下的行人检测算法【附代码】

✅博主简介:本人擅长建模仿真、数据分析、论文写作与指导,项目与课题经验交流。项目合作可私信或扫描文章底部二维码。


低照度行人检测是计算机视觉领域的一项重要应用,主要针对在光线较暗或不理想的环境中检测和识别行人目标。随着城市化进程的加快,夜间出行的安全性愈发受到关注。低照度环境下,行人目标往往容易被忽视或难以辨认,这增加了交通事故的风险。因此,低照度行人检测技术的应用显得尤为必要,不仅能够提高行人的安全性,减少事故发生,还能为自动驾驶、机器人导航和智能监控等系统提供更强的感知能力,增强其安全性和可靠性。在智慧城市的构建中,低照度行人检测在交通管理、安全监控和紧急救援响应等方面也扮演着重要角色。

本文针对低照度场景中行人检测效果差、误检和漏检等问题,提出了两种改进的行人检测方法,并设计实现了一款低照度场景的行人监测系统。具体而言,本文的工作主要集中在以下几个方面:

首先,本文提出了一种基于YOLOv5-RCD的低照度行人检测算法。该算法引入了注意力机制和结构重参数化思想,以增强网络的特征提取能力。针对上采样过程中可能造成的语义信息丢失问题,本文使用转置卷积进行上采样操作,以保证特征的完整性。此外,考虑到目标检测中的分类任务和回归任务之间的冲突,本文设计了一种轻量化的解耦头,这使得网络在进行任务时能更为高效。在训练策略方面,采用了SIoU替代传统的CIoU,这不仅提高了训练速度,还增强了推理精度。为进一步提升算法性能,本文还引入了知识蒸馏技术,利用教师模型的知识指导学生模型的训练。在自制的夜间行人数据集上进行的实验表明,该算法在mAP@0.5上提升了5.2%,而mAP@0.5:0.95的提升则达到2.2%。

其次,本文提出了一种基于MV-YOLO的轻量级多尺度特征融合检测算法。该算法的第一步使用URetinex-Net对低光照图像进行增强处理,显著降低了漏检率。接着,采用MobileViTv3对骨干网络进行重构,以进一步增强模型的特征提取能力。为了更好地融合丰富的语义信息,本文在特征融合网络部分设计了一种多级特征融合模块,能够有效整合不同层次的信息。最终在公开的ExDark数据集上进行的实验结果验证了MV-YOLO算法的有效性,mAP@0.5的提升达到7.6%,而mAP@0.5:0.95的提升为5.9%。

最后,基于上述两种算法,本文设计并实现了一款基于PyQt5的低照度行人监测系统。该系统能够在夜间低光照条件下实现行人监控和识别,具有较高的检测精度和实时检测速度,能够满足实际应用需求。系统的设计充分考虑了用户体验,界面友好,操作简便,使得技术能够更好地服务于社会的实际需求。

通过对上述两种算法的研究与应用,本文不仅展示了低照度行人检测的技术进步,也为未来的研究提供了参考。随着智能交通和智慧城市的不断发展,低照度行人检测技术将发挥越来越重要的作用,有助于提升社会安全性和生活质量。

import torch
from models.yolo import Model
from utils.datasets import LoadImages
from utils.general import non_max_suppression
from utils.torch_utils import select_device

class LowLightPedestrianDetection:
    def __init__(self, model_path, device='0'):
        self.device = select_device(device)
        self.model = Model(model_path).to(self.device)
        self.model.eval()

    def enhance_image(self, img):
        # 低光照图像增强算法
        # 使用U-Retinex算法增强图像
        enhanced_img = self.ur_retinex(img)
        return enhanced_img

    def ur_retinex(self, img):
        # 实现U-Retinex算法的具体细节
        # 这里填入增强代码
        return img

    def detect_pedestrians(self, img):
        img = self.enhance_image(img)
        img = img.to(self.device)
        pred = self.model(img)
        pred = non_max_suppression(pred, 0.4, 0.5)  # 应用NMS

        return pred

# 使用示例
model_path = 'path/to/yolov5_model.pt'  # YOLOv5模型路径
detector = LowLightPedestrianDetection(model_path)

# 加载低照度图像
img_path = 'path/to/low_light_image.jpg'
dataset = LoadImages(img_path)

for path, img, im0s, vid_cap in dataset:
    detections = detector.detect_pedestrians(img)
    # 处理检测结果,绘制框等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值