✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
在当今智能化、网联化的背景下,汽车的定义和边界正在被重写,人们希望未来的智能汽车具备更高水平的安全性、舒适性,甚至是可被定义的属性即“软件定义汽车”,但现有的车辆动力学控制系统还无法满足车辆更安全、更稳定、更智能的需求。以下是针对汽车底盘域多维度动力学集成优化控制及其软件架构设计的核心内容:
(1)设计并优化底盘域多维度动力学集成优化控制软件架构 为了适应未来汽车新构型及新技术的发展需求,设计了一种新的底盘域多维度动力学集成优化控制软件架构。这种架构通过梳理、明确各层级任务及信号流,将整体架构分为信息层、目标层、控制层、逆模型层以及执行层,有效避免了算力浪费。在信息层,通过集成各种传感器数据,如车速、车轮载荷、路面附着系数及坡度等信息,为上层控制提供准确的输入。目标层则基于驾驶者的意图和车辆状态,设定控制目标。控制层负责根据目标和实时状态,计算出执行器的控制指令。逆模型层通过建立执行器的逆模型,实现了动力学控制软件与执行器硬件的解绑,提高了软件的可替换性与复用性。执行层则是将控制指令转化为执行器的动作,实现对车辆动力学的精确控制
。
(2)开发基于多维信息融合的车辆关键状态参数识别算法 为了服务于多维动力学集成优化控制,开发了基于多维信息融合的车辆关键状态参数识别算法。这些参数包括参考车速、车轮载荷、路面附着系数及坡度等信息。为了保证算法在实际场景中的精度及鲁棒性,从传感器信号处理到算法逻辑制定,在考虑多工况适应性的同时,采用多维信息融合的方式,提升估算结果的精确性及稳定性。通过选择估算难度较大的典型工况完成道路测试,证明了所提状态识别算法具备较高的精确性、实时性以及实践应用能力
。
(3)建立能综合反映车辆纵、侧、垂向耦合作用的完整动力学方程 准确描述车辆实际状态下的驾驶员期望,分析车辆多系统动力学耦合效应及轮胎与路面作用力的非线性特性。在此基础上,基于拟牛顿法及深度确定性策略梯度算法,设计并开发了以车辆稳定裕度及能量损失度为目标的轮胎力优化分配控制。同时,考虑到轮胎纵、侧向力不易观测及直接控制,建立Dugoff轮胎逆模型,将其转化为滑移率及侧偏角并有效实现纵、侧向轮胎力的解耦,模型的绝对误差小于2‰。最终将转换后的滑移率、侧偏角结合车身俯仰及侧倾角速度作为三维动力学统一特性模型输出的实际参考值
。
(4)设计动态调节函数并引入临界转角的概念 建立了以车辆稳定裕度及能量损失度为目标的轮胎力优化分配控制动态协同方法。通过分析横摆角速度与质心侧偏角的耦合关系,建立了考虑路面附着的联合滑模控制器,对侧向控制目标进行协调。而为了实现应用软件与执行硬件的解绑,本文提出执行器逆模型的概念,并搭建了考虑铁耗的前馈+PI反馈电机转矩控制驱动系统逆模型以及基于轮缸压力估算的电磁阀控制制动系统逆模型。在联合仿真环境下,电机逆模型能够使被控转矩最大超调量不超过3%,稳态误差不超过1%,最长响应时间不超过46ms。而利用液压逆模型则能够使实际轮缸压力快速、准确的跟随期望值变化,轮缸压力估算误差不超过±5bar,从而验证了逆模型执行状态估算的精确性以及其对相应执行系统控制的实时性及准确性
。
(5)建立底盘域多维度动力学集成控制仿真与试验验证平台 完成了多种工况下的控制性能验证。基于MATLAB/Simulink、AMESim及Car Sim构建联合仿真环境,并根据所研究的车辆构型,设计、试制了轮毂电机独立驱动、线控转向试验平台。在此基础上,对底盘域多维度动力学集成优化控制系统进行仿真及道路测试,在操稳控制目标下,通过轮胎力的优化分配能够保证各轮胎利用率相接近且平均值较低。相比无控制或DYC控制,整车稳定裕度显著提升,且控制过程更为温和、动能损失更少。雪环加速工况下,侧向加速度峰值能够提高约19.20%,稳定车速能够提高约15.35%,显著提升了车辆的稳定裕度,扩展了线性区边界。而节能控制目标下,在对算法进行足够次数的训练后,整车的驱动效率有所提高,SOC下降量最多能够减少约2.68%
# 轮胎力优化分配控制简化模型
def optimize_tire_force(wheel_speeds, target_forces, road_conditions):
"""
优化轮胎力分配
:param wheel_speeds: 车轮速度列表
:param target_forces: 目标轮胎力列表
:param road_conditions: 路面条件
:return: 优化后的轮胎力
"""
optimized_forces = []
for i, speed in enumerate(wheel_speeds):
# 根据路面条件和车轮速度计算轮胎力
tire_force = calculate_tire_force(speed, road_conditions)
# 调整轮胎力以满足目标力
adjusted_force = adjust_force(tire_force, target_forces[i])
optimized_forces.append(adjusted_force)
return optimized_forces
def calculate_tire_force(speed, road_conditions):
"""
根据车轮速度和路面条件计算轮胎力
"""
# 简化模型,实际计算会更复杂
return speed * road_conditions['friction_coefficient']
def adjust_force(current_force, target_force):
"""
调整当前轮胎力以接近目标力
"""
# 简化模型,实际调整策略会更复杂
return (current_force + target_force) / 2