切比雪夫(最小区域法)圆柱拟合算法

37 篇文章 0 订阅
23 篇文章 0 订阅

欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。

本期话题:切比雪夫(最小区域法)圆柱拟合算法

相关背景和理论
点击前往
主要介绍了应用背景和如何转化成线性规划问题

在这里插入图片描述

圆柱拟合输入和输出要求

输入

  1. 10到631个点,全部采样自圆柱附近。
  2. 每个点3个坐标,坐标精确到小数点后面20位。
  3. 坐标单位是mm, 范围[-500mm, 500mm]。

输出

  1. 1点X0表示 圆柱中心轴上1点,用三个坐标表示。
  2. 法向A代表圆柱中心轴法向, 需要单位化。
  3. 圆柱半径r。
  4. 圆柱度F,所有点到圆柱距离最大的2倍。

精度要求

  1. X0点圆柱中轴距离不能超过0.0001mm。
  2. 法向A与标准法向夹角不能超过0.0000001rad。
  3. 圆柱半径r与标准半径不能超过0.0001mm。
  4. F与标准圆柱度误差不能超过0.00001mm。

圆柱优化标函数

根据论文,圆柱拟合转化成数学表示如下:

圆柱参数化表示

  1. 圆柱中心轴上1点X0 = (x0, y0, z0)。
  2. 法向A=(a,b,c)。
  3. 半径r。

圆柱方程 u 2 + v 2 + w 2 a 2 + b 2 + c 2 = r 2 u i = c ( y − y 0 ) − b ( z − z 0 ) v i = a ( z − z 0 ) − c ( x − x 0 ) w i = b ( x − x 0 ) − a ( y − y 0 )   圆柱方程\begin {array}{l}\frac {u^2+v^2+w^2} {a^2+b^2+c^2}=r^2 \\ u_i =c(y-y_0)-b(z-z_0)\\ v_i=a(z-z_0)-c(x-x_0)\\ w_i=b(x-x_0)-a(y-y_0)\ \end {array} 圆柱方程a2+b2+c2u2+v2+w2=r2ui=c(yy0)b(zz0)vi=a(zz0)c(xx0)wi=b(xx0)a(yy0) 

优化能量方程

第i个点 pi(xi, yi, zi)。

距离函数

d i = r i − r d_i = r_i-r di=rir

r i = u 2 + v 2 + w 2 a 2 + b 2 + c 2 u i = c ( y − y 0 ) − b ( z − z 0 ) v i = a ( z − z 0 ) − c ( x − x 0 ) w i = b ( x − x 0 ) − a ( y − y 0 ) \begin {array}{l}r_i = \sqrt{\frac {u^2+v^2+w^2} {a^2+b^2+c^2}} \\ u_i =c(y-y_0)-b(z-z_0)\\ v_i=a(z-z_0)-c(x-x_0)\\ w_i=b(x-x_0)-a(y-y_0) \end {array} ri=a2+b2+c2u2+v2+w2 ui=c(yy0)b(zz0)vi=a(zz0)c(xx0)wi=b(xx0)a(yy0)

能量方程 H = f ( X 0 , A , r ) = max ⁡ 1 n ∣ d i ∣ H=f(X0, A,r)=\displaystyle \max_1^n {|d_i|} H=f(X0,A,r)=1maxndi

X0, A,r是未知量,拟合过程也可以理解为优化X0, A,r使得方程H最小。

用4个数表示中轴直线

如果直接拿6个参数表示直线去做迭代,1是比较麻烦,会出现比较难解的方向,2是法向长度不固定,结果不唯一。

当直线与Z轴偏差比较小的时候可以使用4个参数来表示直线。

在这里插入图片描述
如上图,绿线为Z轴,橙色线为XOY平面。

由于法向与Z轴比较相近,可以设法向为(a, b, 1), a,b 是比较小的量。

规定直线上1点需要在以(a, b, 1)为法向,过0点的平面上。

则有 ax0+by0 + z0=0, 只要知道x0, y0 可知 z0 = -ax0-by0。

转化为线性规划(法向与Z轴接近)

设 a = ( x 0 , y 0 , A a , A b , r ) , d i = F ( x i ;   a ) , 引入 Γ = M A X i = 1 n    ∣ d i ∣ 设a=(x_0, y_0, A_a, A_b,r), d_i=F(x_i;\ a), 引入\Gamma=\overset n{\underset {i=1}{MAX}}\;|d_i| a=(x0,y0,Aa,Ab,r),di=F(xi; a),引入Γi=1MAXndi

根据上述定义,可以将原来的最值问题转化为下述条件

对于所有点应该满足

F ( x i ;   a ) ≤ Γ , ( F ( x i ;   a ) > 0 ) F(x_i;\ a)\le \Gamma, (F(x_i;\ a)>0) F(xi; a)Γ,(F(xi; a)>0)

− F ( x i ;   a ) ≤ Γ , ( F ( x i ;   a ) < 0 ) -F(x_i;\ a)\le \Gamma, (F(x_i;\ a)<0) F(xi; a)Γ,(F(xi; a)<0)

我们可以通过小量迭代慢慢减小Γ

m a x      Δ Γ s . t .     F ( x i , a ) + J Δ a ≤ Γ − Δ Γ , ( i = 1 , 2... n )           − ( F ( x i , a ) + J Δ a ) ≤ Γ − Δ Γ , ( i = 1 , 2... n ) Δ Γ ≥ 0 \begin {array}{c}max \ \ \ \ \Delta {\Gamma}\\ s.t.\ \ \ F(x_i, a) + J\Delta a \le \Gamma -\Delta \Gamma, (i=1,2...n)\\ \ \ \ \ \ \ \ \ \ -(F(x_i, a) + J\Delta a) \le \Gamma -\Delta \Gamma, (i=1,2...n)\\ \Delta \Gamma \ge0\end{array} max    ΔΓs.t.   F(xi,a)+JΔaΓΔΓ,(i=1,2...n)         (F(xi,a)+JΔa)ΓΔΓ,(i=1,2...n)ΔΓ0

上述条件不需要管 F ( x i , a ) + J Δ a 正负情况,若 F ( x i , a ) + J Δ a 为正 − ( F ( x i , a ) + J Δ a ) ≤ Γ − Δ Γ 必成立,反之亦然。 上述条件不需要管F(x_i, a) + J\Delta a正负情况,若F(x_i, a) + J\Delta a为正-(F(x_i, a) + J\Delta a) \le \Gamma -\Delta \Gamma必成立,反之亦然。 上述条件不需要管F(xi,a)+JΔa正负情况,若F(xi,a)+JΔa为正(F(xi,a)+JΔa)ΓΔΓ必成立,反之亦然。
求解出以后更新a, Γ。

对线性规划模型标准化

需要对 Δ x 0 , Δ y 0 , Δ A a , Δ A b , Δ r 拆解,要求变量都要大于等于 0 需要对\Delta x_0, \Delta y_0, \Delta A_a, \Delta A_b,\Delta r 拆解,要求变量都要大于等于0 需要对Δx0,Δy0,ΔAa,ΔAb,Δr拆解,要求变量都要大于等于0

m a x      Δ Γ s . t .     J i ⋅ [ Δ x 0 + - Δ x 0 - Δ y 0 + - Δ y 0 - Δ A a + - Δ A a - Δ A b + − Δ A b − Δ r + - Δ r - ] + Δ Γ ≤ Γ - d i , ( i = 1 , 2... n )        − J i ⋅ [ Δ x 0 + - Δ x 0 - Δ y 0 + - Δ y 0 - Δ A a + - Δ A a - Δ A b + − Δ A b − Δ r + - Δ r - ] + Δ Γ ≤ Γ + d i , ( i = 1 , 2... n ) Δ x 0 + , Δ x 0 − , Δ y 0 + , Δ y 0 − , Δ A a + , Δ A a − , Δ A b + , Δ A b − , Δ r + , Δ r − , Δ Γ ≥ 0 ( 1 ) \begin {array}{c}max \ \ \ \ \Delta {\Gamma}\\ s.t.\ \ \ J_i \cdot \begin {bmatrix} \Delta x_0^+-\Delta x_0^-\\ \Delta y_0^+-\Delta y_0^-\\ \Delta A_a^+-\Delta A_a^-\\ \Delta A_b^+- \Delta A_b^- \\ \Delta r^+-\Delta r^-\end{bmatrix} +\Delta \Gamma\le \Gamma-d_i, (i=1,2...n)\\\\ \ \ \ \ \ \ -J_i \cdot \begin {bmatrix} \Delta x_0^+-\Delta x_0^-\\ \Delta y_0^+-\Delta y_0^-\\ \Delta A_a^+-\Delta A_a^-\\ \Delta A_b^+- \Delta A_b^- \\ \Delta r^+-\Delta r^-\end{bmatrix}+\Delta \Gamma\le \Gamma+d_i, (i=1,2...n)\\ \Delta x_0^+, \Delta x_0^-, \Delta y_0^+, \Delta y_0^-, \Delta A_a^+, \Delta A_a^-, \Delta A_b^+, \Delta A_b^-,\Delta r^+, \Delta r^-, \Delta \Gamma \ge0\end{array} (1) max    ΔΓs.t.   Ji Δx0+Δx0Δy0+Δy0ΔAa+ΔAaΔAb+ΔAbΔr+Δr +ΔΓΓdi,(i=1,2...n)      Ji Δx0+Δx0Δy0+Δy0ΔAa+ΔAaΔAb+ΔAbΔr+Δr +ΔΓΓ+di,(i=1,2...n)Δx0+,Δx0,Δy0+,Δy0,ΔAa+,ΔAa,ΔAb+,ΔAb,Δr+,Δr,ΔΓ0(1)

算法描述

法向与Z轴重合时
x 0 = 0 , y 0 = 0 , z 0 = 0 , a = 0 , b = 0 , c = 1 x_0=0, y_0=0, z_0=0, a=0,b =0, c=1 x0=0,y0=0,z0=0,a=0,b=0,c=1

r i = ( x i 2 + y i 2 ) \begin {array}{l}r_i=\sqrt{(x_i^2+y_i^2)}\end {array} ri=(xi2+yi2)

J, D的计算。

5个未知分别对d_i求导结果如下:

回顾一下

u i = c ( y i − y 0 ) − b ( z i − z 0 ) v i = a ( z i − z 0 ) − c ( x i − x 0 ) w i = b ( x i − x 0 ) − a ( y i − y 0 ) \begin {array}{l}u_i =c(y_i-y_0)-b(z_i-z_0)\\ v_i=a(z_i-z_0)-c(x_i-x_0)\\ w_i=b(x_i-x_0)-a(y_i-y_0)\end {array} ui=c(yiy0)b(ziz0)vi=a(ziz0)c(xix0)wi=b(xix0)a(yiy0)

∂ d i ∂ x 0 = u i 2 + v i 2 + w i 2 − r ∂ x 0 = ( x i − x 0 ) 2 ∂ x 0 2 u i 2 + v i 2 + w i 2 = − x i x i 2 + y i 2 \frac {\partial d_i} {\partial x_0}=\frac {\sqrt{u_i^2+v_i^2+w_i^2}-r} {\partial x_0} \\ =\frac {\frac {(x_i-x_0)^2}{\partial x_0}}{2\sqrt{u_i^2+v_i^2+w_i^2}}\\ =\frac {-x_i}{\sqrt{x_i^2+y_i^2}} x0di=x0ui2+vi2+wi2 r=2ui2+vi2+wi2 x0(xix0)2=xi2+yi2 xi

∂ d i ∂ y 0 = u i 2 + v i 2 + w i 2 − r ∂ y 0 = ( y i − y 0 ) 2 ∂ y 0 2 u i 2 + v i 2 + w i 2 = − y i x i 2 + y i 2 \frac {\partial d_i} {\partial y_0}=\frac {\sqrt{u_i^2+v_i^2+w_i^2}-r} {\partial y_0} \\ =\frac {\frac {(y_i-y_0)^2}{\partial y_0}}{2\sqrt{u_i^2+v_i^2+w_i^2}}\\ =\frac {-y_i}{\sqrt{x_i^2+y_i^2}} y0di=y0ui2+vi2+wi2 r=2ui2+vi2+wi2 y0(yiy0)2=xi2+yi2 yi

∂ d i ∂ a = u i 2 + v i 2 + w i 2 − r ∂ a = [ a ( z i − z 0 ) − c ( x i − x 0 ) ] 2 ∂ a 2 u i 2 + v i 2 + w i 2 = − x i z i x i 2 + y i 2 \frac {\partial d_i} {\partial a}=\frac {\sqrt{u_i^2+v_i^2+w_i^2}-r} {\partial a}\\ =\frac {\frac {[a(z_i-z_0)-c(x_i-x_0)]^2}{\partial a}}{2\sqrt{u_i^2+v_i^2+w_i^2}}\\ =\frac {-x_iz_i}{\sqrt{x_i^2+y_i^2}} adi=aui2+vi2+wi2 r=2ui2+vi2+wi2 a[a(ziz0)c(xix0)]2=xi2+yi2 xizi

∂ d i ∂ b = u i 2 + v i 2 + w i 2 − r ∂ b = [ c ( y i − y 0 ) − b ( z i − z 0 ) ] 2 ∂ b 2 u i 2 + v i 2 + w i 2 = − y i z i x i 2 + y i 2 \frac {\partial d_i} {\partial b}=\frac {\sqrt{u_i^2+v_i^2+w_i^2}-r} {\partial b}\\ =\frac {\frac {[c(y_i-y_0)-b(z_i-z_0)]^2}{\partial b}}{2\sqrt{u_i^2+v_i^2+w_i^2}}\\ =\frac {-y_iz_i}{\sqrt{x_i^2+y_i^2}} bdi=bui2+vi2+wi2 r=2ui2+vi2+wi2 b[c(yiy0)b(ziz0)]2=xi2+yi2 yizi

∂ d i ∂ r = u i 2 + v i 2 + w i 2 − r ∂ r = − 1 \frac {\partial d_i} {\partial r}=\frac {\sqrt{u_i^2+v_i^2+w_i^2}-r} {\partial r} = -1 rdi=rui2+vi2+wi2 r=1

一次迭代过程

  1. 确定圆柱初值,Γ, 高斯拟合圆柱确定初值点击前往

  2. 根据上述公式(1)构建线性规划方程

  3. 求解 Δ p \Delta p Δp

  4. 更新解
    [ x 0 y 0 z 0 ] = [ x 0 y 0 z 0 ] + U T ⋅ [ p x 0 p y 0 − p a p x 0 − p b p y 0 ] [ a b c ] = U T ⋅ [ p a p b 1 ] . n o r m a l i z e ( ) r = r + p r Γ = Γ − Δ Γ \begin {array}{l} \\ \begin {bmatrix}x_0 \\ y_0 \\ z_0 \end {bmatrix} = \begin {bmatrix}x_0 \\ y_0 \\ z_0 \end {bmatrix} + U^T \cdot \begin{bmatrix}p_{x_0} \\ p_{y_0}\\ -p_ap_{x_0}-p_bp_{y_0}\end {bmatrix} \\ \\\begin {bmatrix}a \\ b \\ c \end {bmatrix} = U^T \cdot \begin{bmatrix}p_a \\ p_b \\ 1 \end {bmatrix}.normalize() \\\\ r=r+p_r \\\\ \Gamma = \Gamma-\Delta \Gamma \end {array} x0y0z0 = x0y0z0 +UT px0py0papx0pbpy0 abc =UT papb1 .normalize()r=r+prΓ=ΓΔΓ

  5. 重复2直到收敛

最后,输出时F=2*Γ

代码实现

代码链接:https://gitcode.com/chenbb1989/3DAlgorithm/blob/master/CBB3DAlgorithm/Fitting/chebyshev/CylinderFitter.cpp

拟合代码

#include "CylinderFitter.h"
#include "../gauss/CylinderFitter.h"
#include <corecrt_math_defines.h>
#include <Eigen/Dense>
#include<iostream>


namespace Chebyshev {
	double CylinderFitter::F(Fitting::Cylinder cylinder, const Point& p)
	{
		double di = (p - cylinder.center).cross(cylinder.orient).norm() - cylinder.r;
		return di;
	}
	double CylinderFitter::GetError(Fitting::Cylinder cylinder, const std::vector<Eigen::Vector3d>& points)
	{
		double err = 0;
		for (auto& p : points) {
			err = std::max(err, abs(F(cylinder, p)));
		}

		return err;
	}
	Fitting::Matrix CylinderFitter::Jacobi(const std::vector<Eigen::Vector3d>& points)
	{
		int n = points.size();
		Fitting::Matrix J(n, 5);
		for (int i = 0; i < n; ++i) {
			auto& p = points[i];
			double ri = Eigen::Vector2d(p.x(), p.y()).norm();

			//di求导
			J(i, 0) = -p.x() / ri;
			J(i, 1) = -p.y() / ri;
			J(i, 2) = -p.x() * p.z() / ri;
			J(i, 3) = -p.y() * p.z() / ri;
			J(i, 4) = -1;
		}
		return J;
	}

	void CylinderFitter::beforHook(const std::vector<Eigen::Vector3d>& points)
	{
		U = Fitting::getRotationByOrient(cylinder.orient);
		for (int i = 0; i < points.size(); ++i) {
			transPoints[i] = U * (points[i] - cylinder.center);
		}
	}
	void CylinderFitter::afterHook(const Eigen::VectorXd& xp)
	{
		cylinder.center += U.transpose() * Eigen::Vector3d(xp(0), xp(1), -xp(2)*xp(0)-xp(3)*xp(1));
		cylinder.orient = U.transpose() * Eigen::Vector3d(xp(2), xp(3), 1).normalized();
		cylinder.r += xp(4);
		gamma -= xp(5);
	}
	Eigen::VectorXd CylinderFitter::getDArray(const std::vector<Eigen::Vector3d>& points)
	{
		int n = points.size();
		Eigen::VectorXd D(points.size());
		for (int i = 0; i < points.size(); ++i) D(i) = Eigen::Vector2d(points[i].x(), points[i].y()).norm() - cylinder.r;
		return D;
	}
	bool CylinderFitter::GetInitFit(const std::vector<Eigen::Vector3d>& points)
	{
		if (points.size() < 5)return false;
		Fitting::FittingBase* fb = new Gauss::CylinderFitter();
		fb->Fitting(points, &cylinder);
		delete fb;
		gamma = GetError(points);
		return true;
	}
	double CylinderFitter::F(const Eigen::Vector3d& p)
	{
		return Chebyshev::CylinderFitter::F(cylinder, p);
	}
	double CylinderFitter::GetError(const std::vector<Eigen::Vector3d>& points)
	{
		return Chebyshev::CylinderFitter::GetError(cylinder, points);
	}
	void CylinderFitter::Copy(void* ele)
	{
		memcpy(ele, &cylinder, sizeof(Fitting::Cylinder));
	}

	CylinderFitter::CylinderFitter()
	{
		ft = Fitting::FittingType::CHEBYSHEV;
	}
}


测试结果

https://gitcode.com/chenbb1989/3DAlgorithm/blob/master/CBB3DAlgorithm/Fitting/chebyshev/chebyshev-testdata/officialtest/fitting_result/result.txt
C37 : CYLINDER : pass
C38 : CYLINDER : pass
C39 : CYLINDER : pass
C40 : CYLINDER : pass
C41 : CYLINDER : pass
C42 : CYLINDER : pass
C43 : CYLINDER : pass
C44 : CYLINDER : pass
C45 : CYLINDER : pass
C46 : CYLINDER : pass
C47 : CYLINDER : pass
C48 : CYLINDER : pass
C49 : CYLINDER : pass
C50 : CYLINDER : pass



本人码农,希望通过自己的分享,让大家更容易学懂计算机知识。创作不易,帮忙点击公众号的链接。

  • 19
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值