在2023年度,人工智能(AI)领域发布了许多重要的研究论文,涵盖了从大型语言模型到多模态学习等多个方向。以下是一些值得关注的论文及其链接:
-
Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling
- 这篇论文探讨了大规模训练的多个大语言模型(LLM),并公开了训练细节和分析结果,提供了对模型性能影响因素的深入见解。
- 论文链接
-
Llama 2: Open Foundation and Fine-Tuned Chat Models
- Meta发布的Llama 2模型系列,参数从70亿到700亿不等,包含经过强化学习与人类反馈(RLHF)微调的聊天模型,展示了在安全性和实用性方面的显著提升。
- 论文链接
-
QLoRA: Efficient Fine-Tuning of Quantized Large Language Models
- QLoRA技术通过量化低秩适应(LoRA)方法,显著降低了大语言模型的内存需求,使得在较小的GPU上也能运行大型模型。
- 论文链接
-
BloombergGPT: A Large Language Model for Finance
- 该论文展示了如何在特定领域(金融)数据集上预训练一个大型语言模型,提供了详细的训练过程和数据集描述。
- 论文链接
-
Sparks of Artificial General Intelligence: Early experiments with GPT-4
- 这篇论文探讨了GPT-4的早期实验,展示了其在多领域任务中的表现,认为其具备接近人工通用智能(AGI)的潜力。
- 论文链接
-
PaLM-E: An Embodied Multimodal Language Model
- Google的PaLM-E模型结合了视觉和语言输入,展示了在机器人操作和视觉问答等任务中的强大能力。
- 论文链接
-
Generative Agents: Interactive Human-like Agents
- 介绍了一种生成型代理的架构,能够模拟可信的人类行为,应用于多种交互式环境中。
- 论文链接
这些论文展示了AI技术的最新进展,为未来的研究方向提供了重要的参考。
更多: