机器人学
AndyCheng_hgcc
这个作者很懒,什么都没留下…
展开
-
三维矩阵旋转、平移的左乘与右乘分析
https://blog.csdn.net/miaomiaoyuan/article/details/54973363三维矩阵旋转、平移的左乘与右乘分析在矩阵的初等变换中,矩阵的左乘代表着行变换,TA=B。矩阵的右乘相当于列变换, AT=C。当三维坐标发生旋转、平移时,就需要考虑到矩阵是左乘还是右乘。设有旋转矩阵R,平移矩阵T, 坐标矩阵A。-若是绕着静态的世界坐标系旋转,有R...转载 2018-11-16 09:53:03 · 1462 阅读 · 0 评论 -
Eigen库使用教程之旋转矩阵,旋转向量和四元数的初始化和相互转换的实现
https://blog.csdn.net/u011092188/article/details/77430988相关博客:* C++矩阵库 Eigen 快速入门* Eigen: C++开源矩阵计算工具——Eigen的简单用法转载 2019-03-11 10:45:55 · 404 阅读 · 0 评论 -
Kalibr 之 Camera-IMU 标定 (总结)
https://blog.csdn.net/u011178262/article/details/83316968转载 2019-01-23 00:15:45 · 230 阅读 · 0 评论 -
kalibr 如何从bag中提取图像/由图像生成bag
1. 从bag中提取图像使用kalibr自带的bagextractor工具./kalibr_bagextractor --image-topics /cam0/image_raw --bag ./static/output.bag使用python脚本 2. 由图像生成bag使用kalibr提供的bagcreater工具./kalibr_bagcreater --folder ....原创 2018-12-11 19:08:12 · 2493 阅读 · 3 评论 -
Flourish: Automated Ground Intervention for Precision Farming
参考:http://ict-agri.eu/node/36249http://www.flourish-project.eu/http://www.flourish-project.eu/documents/http://www.flourish-project.eu/videos/ugv/http://www2.informatik.uni-freiburg.de/~fleckenf/ ...原创 2018-12-20 01:16:19 · 235 阅读 · 0 评论 -
Absolute Orientation - Horn's method
https://www.mathworks.com/matlabcentral/fileexchange/26186-absolute-orientation-horn-s-methodABSOR is a tool for least squares estimation of the rotation -- and optionally also thescaling and trans...转载 2018-12-03 11:32:04 · 436 阅读 · 0 评论 -
四元数与欧拉角(RPY角)的相互转换
https://www.cnblogs.com/21207-iHome/p/6894128.htmlRPY角与Z-Y-X欧拉角 描述坐标系{B}相对于参考坐标系{A}的姿态有两种方式。第一种是绕固定(参考)坐标轴旋转:假设开始两个坐标系重合,先将{B}绕{A}的X轴旋转γγ,然后绕{A}的Y轴旋转ββ,最后绕{A}的Z轴旋转αα,就能旋转到当前姿态。可以称其为X-Y-Z fixed ang...转载 2018-12-01 19:40:29 · 3086 阅读 · 2 评论 -
彻底搞懂四元数
https://blog.csdn.net/silangquan/article/details/39008903提要旋转的表达方式有很多种,有欧拉角,旋转矩阵,轴角,四元素等等,今天要学习的就是游戏开发中最常用的四元素。从欧拉角和轴向角到四元数在讲四元素之前,我们先来看下简单的欧拉角和轴向角。欧拉角使用最简单的x,y,z值来分别表示在x,y,z轴上的旋转角度,其取值为0-360(...转载 2018-12-01 19:37:45 · 255 阅读 · 0 评论 -
机器人学导论(一)——空间描述和变换
https://blog.csdn.net/u013745804/article/details/79274900本着看书一定要写出来才能理解的心态,我开设了这个专栏,目的有两个:一是督促自己看书学习;二是与大家一起分享自己的读书感悟,在大家的批评中成长。 这篇博文我们主要介绍空间描述和变换,相信大家对于其重要性都表示认同。举个例子,比如我们在做基于视觉的抓取时,不管是眼在手上(...转载 2018-11-15 10:43:20 · 740 阅读 · 0 评论 -
百度无人车ApolloAuto使用入门
https://blog.csdn.net/ss910/article/details/749981721.安装原版ubuntu 14.04http://www.ubuntu.org.cn/download/alternative-downloads2.安装对应ubuntu 14.04的indigo版ROShttp://wiki.ros.org/indigo/Installation/...转载 2018-11-19 11:28:39 · 417 阅读 · 0 评论 -
百度Apollo开源架构搭建(VMware虚拟机版)
https://blog.csdn.net/BIT20091643/article/details/78887508一、虚拟机主机操作系统为Win 10,虚拟机版本VMware Workstation12.5.7.20721,百度搜索即可下载。二、Ubuntu14.04系统安装Apollo架构是在ros Indigo版本基础上搭建的,由于ros版本与Ubuntu系统相关,建议安装Ubu...转载 2018-11-19 11:26:57 · 988 阅读 · 1 评论 -
三维空间中的几何变换-平移旋转缩放
https://blog.csdn.net/swety_gxy/article/details/73087848前言前段时间由于项目需要,深入学习了下图形几何变换,主要是绕任意轴旋转部分(其他的已有一定基础),现记录学习笔记。文章内容部分引用并参考了下面的博客:http://netclass.csu.edu.cn/NCourse/hep089/Chapter6/CG_Txt_6_...转载 2018-11-16 11:04:00 · 1323 阅读 · 0 评论 -
四元数插值与均值(姿态平滑)
https://www.cnblogs.com/21207-iHome/p/6952004.html转载 2019-03-12 18:27:26 · 1443 阅读 · 0 评论