在我入行产品经理之前,“产品经理”这个角色一直给我一种“专业”、“高级”、“高薪“的面纱。
随着在这个岗位上时间和经验的累积,神秘的面纱逐渐被揭开,展露在眼前的,是“终身学习”、“快速变化”、“持续思考”、“逻辑为王”等等围绕在前路的关键词。
无论是出于兴趣、热爱、还是生存,我都想继续深耕在这个岗位上。所以,我想通过写作来帮助自己提升专业技能、深度思考、沉淀方法论。
也希望通过时间的累积,达到从量变达到质变的过程。我会围绕自己在产品经理岗位,通过学习、工作、思考等方式记录收获,帮助自己复盘总结自己的收获。
一句话介绍“产品经理”:
产品经理是一个在贯穿产品生命周期的全过程,围绕产品的设计、上线、迭代、运营、推广而整合并驱动资源,从而实现最终目标的角色。
一、产品经理的核心工作流(从0-1):
-
前期调研:调研市场、调研需求、调研竞品
-
规划设计:产品定义、产品发展规划、产品路标设计、产品方案设计
-
项目管理:整合资源,按设计方案研发、按项目计划上线
-
培训宣讲:产品上线测试、产品上线宣导、产品路演、产品发布会
-
运营迭代:确认迭代方向、设计迭代方案
二、产品经理分类:
作为一个已经不算“新” 的岗位,随着时间内的累积和企业的要求的提升,产品经理岗位类型已经变得更细分、更垂直,目前企业招聘的普遍要求,需要有行业经验+对标产品经验。
不同的细分产品岗位,对于产品经理的能力要求也不一样,所以,在入行之前,最好能够按照“行业+产品”维度,选定自己要深耕的方向。当然,选择了方向后,不代表以后不能换方向,产品底层的核心工作流和核心能力都是通用的,不管在那个细分方向,都要注意能力的积累和复盘,帮助自己抽象出可迁移的核心技能。
具体的分类参考如下:
1、按照面向的用户群体:
To B端:面向企业客户
to C端:面向个人客户
to G端:面向政府客户
2、按照产品细分方向:
AI产品经理:需要具备AI的基础技术知识,了解AI技术的实现逻辑和当前发展趋势。主要应用场景如:智慧医疗、智慧城市、智能机器人等软硬件结合的产品,也有如在线智能客服(淘宝在线客服)、智能语音(像siri)等纯软件端产品。
数据产品经理:需要会使用Python或SQL等数据处理语言,理解数据库及数据处理流程,为企业内部各个部门设计数据报表、数据看板等数据产品功能,以满足业务对数据分析的需求。
商业产品经理:需要理解广告投放、流量获取策略,策划广告投放平台,通过设计各种投放的策略来更高效的获取流量。
营销产品经理:主要是围绕企业营销场景,基于营销的上下游,设计用户增长、销售转化各策略。
3、按照行业方向:
金融产品经理、供应链产品经理、电商产品经理、物流产品经理、工业产品经理……
三、产品经理未来的更多可能性:
我想不管你在产品经理这个岗位干多久,只要用心积累,都会有很大的收获,当然,未来也会有更多的可能性,这个可能性主要可以从两个方面来讲:
纵向:负责一个模块→负责一个产品→负责一个产品线→负责一个业务线→负责一个公司
横向:项目经理、产品运营、产品讲师、咨询师、其他职业
四、产品经理能力梳理:
硬技能:
1、调研分析能力:
① 市场分析
② 用户分析
③竞品分析
④需求分析
如何将用户需求转换为产品功能,这个是对于产品经理的能力考核之一,不是用户说做什么产品就要听话照做,这样产品经理就会沦为需求传话筒,很可能做出来的需求被各种人质疑:老板会质疑这个功能上线后投入产出比是什么,解决了什么问题,带来了什么价值;
研发会质疑你,为什么要做这个需求,为什么要这么做这个功能?
用户也会质疑你,咦?我要的不是这个效果呀!
最后你可能就会质疑你自己。所以,一定要学会:“用心听,不照做”,“多问为什么“。
另外,需求的类型不是恒定不变的,是会随着产品的不断迭代和市场的发展而变化的
2、产品规划能力:
3、数据分析能力:
4、技术理解能力
产品经理可以不会写代码,但是作为业务与研发的桥梁,要明白产品功能是否可以实现,实现的逻辑是什么。
5、项目管理能力
6、行业理解能力
软技能:
五、产品经理思维锻炼:
1、多看:
看别人的方法论
看别人的思考方式
看别人的产品
2、多听
听别人的理解
听别人的分析
听别人的思路
3、多想
多想想为什么,知其然还要知其所以然是最重要的,无论是做产品,还是其他
那么,我们该如何学习大模型?
🤔越来越多的人开始转行AI产品经理,毕竟大行情不是太好,对于刚毕业的研究生,想转行的互联网人,AI产品经理,确实是一个不错的方向,我在大厂做了多年的AI产品经理,还是想给大家一些经验和方向⏩
🔥AGI大模型在行业大火,AI产品经理到底要学哪些内容,和算法工程师有哪些区别,转行AI产品经理要学哪些东西,作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
以下是整个学习思路和方向👇
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
本文转自 https://blog.csdn.net/m0_57081622/article/details/140637348?spm=1001.2014.3001.5501,如有侵权,请联系删除。