Alice和Bob玩了一个古老的游戏:首先画一个 n×n 的点阵(下图 n=3 )。
接着,他们两个轮流在相邻的点之间画上红边和蓝边:
直到围成一个封闭的圈(面积不必为 11)为止,“封圈”的那个人就是赢家。因为棋盘实在是太大了,他们的游戏实在是太长了!
他们甚至在游戏中都不知道谁赢得了游戏。
于是请你写一个程序,帮助他们计算他们是否结束了游戏?
输入格式
输入数据第一行为两个整数 n 和 m。n表示点阵的大小,m 表示一共画了 m 条线。
以后 m 行,每行首先有两个数字 (x,y),代表了画线的起点坐标,接着用空格隔开一个字符,假如字符是 D,则是向下连一条边,如果是 R 就是向右连一条边。
输入数据不会有重复的边且保证正确。
输出格式
输出一行:在第几步的时候结束。
假如 m 步之后也没有结束,则输出一行“draw”。
数据范围
1≤n≤200,
1≤m≤24000
输入样例:
3 5
1 1 D
1 1 R
1 2 D
2 1 R
2 2 D
输出样例:
4
思路:
读题目可知谁先画成一个环,谁就赢。
当前的问题就是如何判断是否形成一个环?
假设当前添加的边是 (a,b)(a,b 均表示一个点),那么连完后是环的话一定满足 (a,b) 原来就连接,在并查集中,就是满足 a,b 在同一集合。
至此,这题就做完了,注意一下并查集的下标用一位数方便,于是我们可以把坐标为 (i,j) 的点进行编号,将其编号为 i∗n+j 的点。
代码:
#include <iostream>
using namespace std;
const int N = 200 * 200 + 10;
int n, m, a, b, x, y;
int res;
int p[N];
int find(int u) {
if (p[u] != u) p[u] = find(p[u]);
return p[u];
}
int get(int a, int b) {
return a * n + b;
}
int main() {
cin >> n >> m;
for (int i = 1; i <= n * n; i ++ ) p[i] = i;
for (int i = 1; i <= m; i ++ ) {
string op;
cin >> x >> y >> op;
x --, y -- ;
a = get(x, y);
if (op == "D") b = get(x + 1, y);
else b = get(x, y + 1);
int pa = find(a), pb = find(b);
if (pa == pb) {
res = i;
break;
}
p[pa] = pb;
}
if (!res) cout << "draw";
else cout << res;
}