陶哲轩实分析(上)11.2及习题-Analysis I 11.2

这节介绍逐段常值函数。

Exercise 11.2.1

We choose ∀ K ∈ P ′ ∀K∈\mathbf P' KP, then ∃ J ∈ P , K ⊆ J ∃J∈\mathbf P,K⊆J JP,KJ, we can know f ∣ J f|_J fJ is constant, thus f f f is constant on K K K, this means f f f is piecewise constant with respect to P ′ \mathbf P' P.

Exercise 11.2.2

By the condition given, there exists partitions P \mathbf P P and P ′ \mathbf P' P, s.t. f f f is piecewise constant with respect to P \mathbf P P, and g g g is piecewise constant with respect to P ′ \mathbf P' P.
Now we consider any element K ∈ P # P ′ K∈\mathbf P\#\mathbf P' KP#P, by Lemma 11.2.7, f f f and g g g are piecewise constant with respect to P # P ′ \mathbf P\#\mathbf P' P#P, thus we can have c , d c,d c,d, s.t. f ( x ) = c , g ( x ) = d , ∀ x ∈ K f(x)=c,g(x)=d,∀x∈K f(x)=c,g(x)=d,xK, this means:
( f + g ) ( x ) = f ( x ) + g ( x ) = c + d , ∀ x ∈ K ( f − g ) ( x ) = f ( x ) − g ( x ) = c − d , ∀ x ∈ K max ⁡ ⁡ ( f , g ) ( x ) = max ⁡ ⁡ ( f ( x ) , g ( x ) ) = max ⁡ ⁡ ( c , d ) , ∀ x ∈ K ( f g ) ( x ) = f ( x ) g ( x ) = c d , ∀ x ∈ K (f+g)(x)=f(x)+g(x)=c+d,\quad ∀x∈K \\ (f-g)(x)=f(x)-g(x)=c-d,\quad ∀x∈K \\ \max⁡(f,g) (x)=\max⁡(f(x),g(x))=\max⁡(c,d),\quad ∀x∈K \\ (fg)(x)=f(x)g(x)=cd,\quad ∀x∈K (f+g)(x)=f(x)+g(x)=c+d,xK(fg)(x)=f(x)g(x)=cd,xKmax(f,g)(x)=max(f(x),g(x))=max(c,d),xK(fg)(x)=f(x)g(x)=cd,xK
If in addition we have g ( x ) ≠ 0 , ∀ x ∈ I g(x)≠0,∀x∈I g(x)=0,xI, we can further have d ≠ 0 d≠0 d=0 and
( f / g ) ( x ) = f ( x ) / g ( x ) = c / d , ∀ x ∈ K (f/g)(x)=f(x)/g(x)=c/d,\quad ∀x∈K (f/g)(x)=f(x)/g(x)=c/d,xK
From above we can see that f + g , f − g , max ⁡ ⁡ ( f , g ) , f g f+g,f-g,\max⁡(f,g),fg f+g,fg,max(f,g),fg and if g g g doesn’t vanish on I I I, f / g f/g f/g are constant on K K K, since we choose arbitrary K K K from P # P ′ \mathbf P\#\mathbf P' P#P, we conclude all the functions are piecewise constant on I I I.

Exercise 11.2.3

By Lemma 11.2.7, we know f f f is piecewise constant with respect to P # P ′ \mathbf P\#\mathbf P' P#P, thus the value
p . c . ∫ [ P # P ′ ] f = ∑ J ∈ P # P ′ c J ∣ J ∣ p.c.∫_{[\mathbf P\#\mathbf P' ]} f=∑_{J∈\mathbf P\#\mathbf P'}c_J |J| p.c.[P#P]f=JP#PcJJ
is well defined. Now choose any K ∈ P K∈\mathbf P KP, then P K = { J ∈ P # P ′ : J ⊆ K } P_K=\{J∈\mathbf P\#\mathbf P':J⊆K\} PK={JP#P:JK} is a partition of K K K, and f f f is constant with constant value c K c_K cK on both K K K and all elements of P K \mathbf P_K PK, thus by Theorem 11.1.13 we have c J = c K , ∀ J ∈ P K c_J=c_K,∀J∈\mathbf P_K cJ=cK,JPK, and
∣ K ∣ = ∑ J ∈ P K ∣ J ∣ ⇒ c K ∣ K ∣ = ∑ J ∈ P K c K ∣ J ∣ = ∑ J ∈ P K c J ∣ J ∣ |K|=∑_{J∈\mathbf P_K}|J| ⇒ c_K |K|=∑_{J∈\mathbf P_K}c_K |J|=∑_{J∈\mathbf P_K}c_J |J| K=JPKJcKK=JPKcKJ=JPKcJJ
Also, consider the set { J ∈ P # P ′ : J ⊆ K  for some  K ∈ P } ⊆ P # P ′ \{J∈\mathbf P\#\mathbf P':J⊆K\text{ for some }K∈\mathbf P\}⊆\mathbf P\#\mathbf P' {JP#P:JK for some KP}P#P, for any J ∈ P # P ′ J∈\mathbf P\#\mathbf P' JP#P, by definition we can find a K ∈ P K∈\mathbf P KP and a K ′ ∈ P ′ K'∈\mathbf P' KP s.t. J = K ∩ K ′ J=K∩K' J=KK, so the two sets are equal. Thus
p . c . ∫ [ P ] f = ∑ K ∈ P c K ∣ K ∣ = ∑ K ∈ P ∑ J ∈ P K c J ∣ J ∣ = ∑ J ∈ P # P ′ c J ∣ J ∣ = p . c . ∫ [ P # P ′ ] f p.c.∫_{[\mathbf P]}f=∑_{K∈\mathbf P}c_K |K| =∑_{K∈\mathbf P}∑_{J∈\mathbf P_K}c_J |J|=∑_{J∈\mathbf P\#\mathbf P'}c_J |J|=p.c.∫_{[\mathbf P\#\mathbf P']}f p.c.[P]f=KPcKK=KPJPKcJJ=JP#PcJJ=p.c.[P#P]f
Similarly we can prove p . c . ∫ [ P ′ ] f = p . c . ∫ [ P # P ′ ] f p.c.∫_{[\mathbf P' ]}f=p.c.∫_{[\mathbf P\#\mathbf P']}f p.c.[P]f=p.c.[P#P]f, and the statement is proved.

Exercise 11.2.4

We choose partitions of I I I: P ′ \mathbf P' P and P ′ ′ \mathbf P'' P such that f f f is piecewise constant with respect to P ′ \mathbf P' P and g g g is piecewise constant with respect to P ′ ′ \mathbf P'' P. Then let P = P ′ # P ′ ′ \mathbf P=\mathbf P'\#\mathbf P'' P=P#P, we can see f f f and g g g are piecewise constant with respect to P \mathbf P P. For any K ∈ P K∈\mathbf P KP, let c K , d K c_K,d_K cK,dK denote the constant value of f f f and g g g on K K K.
( a ) f + g f+g f+g is piecewise constant with respect to P \mathbf P P, with constant value c K + d K c_K+d_K cK+dK on K ∈ P K∈\mathbf P KP
p . c . ∫ I ( f + g ) = p . c . ∫ [ P ] ( f + g ) = ∑ K ∈ P ( c K + d K ) ∣ K ∣ = ∑ K ∈ P c K ∣ K ∣ + ∑ K ∈ P d K ∣ K ∣ = p . c . ∫ [ P ] f + p . c . ∫ [ P ] g = p . c . ∫ I f + p . c . ∫ I g \begin{aligned}p.c.∫_I (f+g) &=p.c.∫_{[\mathbf P]}(f+g) =∑_{K∈\mathbf P}(c_K+d_K)|K|=∑_{K∈\mathbf P}c_K |K|+∑_{K∈\mathbf P}d_K |K|\\&=p.c.∫_{[\mathbf P]}f+p.c.∫_{[\mathbf P]}g=p.c.∫_If+p.c.∫_I g \end{aligned} p.c.I(f+g)=p.c.[P](f+g)=KP(cK+dK)K=KPcKK+KPdKK=p.c.[P]f+p.c.[P]g=p.c.If+p.c.Ig

( b ) c f cf cf is piecewise constant with respect to P \mathbf P P, with constant value c c K cc_K ccK on K ∈ P K∈\mathbf P KP
p . c . ∫ I ( c f ) = p . c . ∫ [ P ] ( c f ) = ∑ K ∈ P ( c c K ) ∣ K ∣ = c ∑ K ∈ P c K ∣ K ∣ = c ( p . c . ∫ [ P ] f ) = c ( p . c . ∫ I f ) p.c.∫_I(cf) =p.c.∫_{[\mathbf P]}(cf) =∑_{K∈\mathbf P}(cc_K)|K| =c∑_{K∈\mathbf P}c_K |K|=c(p.c.∫_{[\mathbf P]}f)=c(p.c.∫_If) p.c.I(cf)=p.c.[P](cf)=KP(ccK)K=cKPcKK=c(p.c.[P]f)=c(p.c.If)

( c ) Use (b) we have p . c . ∫ I ( − g ) = − p . c . ∫ I g p.c.∫_I(-g) =-p.c.∫_Ig p.c.I(g)=p.c.Ig, then use (a) we get
p . c . ∫ I ( f − g ) = p . c . ∫ I ( f + ( − g ) ) = p . c . ∫ I f + p . c . ∫ I ( − g ) = p . c . ∫ I f − p . c . ∫ I g p.c.∫_I(f-g) =p.c.∫_I(f+(-g)) =p.c.∫_If+p.c.∫_I(-g) =p.c.∫_If-p.c.∫_Ig p.c.I(fg)=p.c.I(f+(g))=p.c.If+p.c.I(g)=p.c.Ifp.c.Ig

( d ) If f ( x ) ≥ 0 , ∀ x ∈ I f(x)≥0,∀x∈I f(x)0,xI, then c K ≥ 0 , ∀ K ∈ P c_K≥0,∀K∈\mathbf P cK0,KP, so we have c K ∣ K ∣ ≥ 0 , ∀ K ∈ P c_K |K|≥0,∀K∈\mathbf P cKK0,KP
p . c . ∫ I f = p . c . ∫ [ P ] f = ∑ K ∈ P c K ∣ K ∣ ≥ 0 p.c.∫_If=p.c.∫_{[\mathbf P]}f=∑_{K∈\mathbf P}c_K |K|≥0 p.c.If=p.c.[P]f=KPcKK0

( e ) We have f ( x ) − g ( x ) ≥ 0 , ∀ x ∈ I f(x)-g(x)≥0,∀x∈I f(x)g(x)0,xI, so use (d) we have
p . c . ∫ I ( f − g ) = p . c . ∫ I f − p . c . ∫ I g ≥ 0 ⇒ p . c . ∫ I f ≥ p . c . ∫ I g p.c.∫_I(f-g) =p.c.∫_If-p.c.∫_Ig≥0 ⇒ p.c.∫_If≥p.c.∫_Ig p.c.I(fg)=p.c.Ifp.c.Ig0p.c.Ifp.c.Ig

( f ) If f ( x ) = c , ∀ x ∈ I f(x)=c,∀x∈I f(x)=c,xI, then c K = c , ∀ K ∈ P c_K=c,∀K∈\mathbf P cK=c,KP, so we have by Theorem 11.1.13
p . c . ∫ I f = p . c . ∫ [ P ] f = ∑ K ∈ P c K ∣ K ∣ = c ∑ K ∈ P ∣ K ∣ = c ∣ I ∣ p.c.∫_If=p.c.∫_{[\mathbf P]}f=∑_{K∈\mathbf P}c_K |K|=c∑_{K∈\mathbf P}|K| =c|I| p.c.If=p.c.[P]f=KPcKK=cKPK=cI

( g ) The set P ∪ { J \ I } \mathbf P∪\{J\backslash I\} P{J\I} is a partition of J J J, and F F F is piecewise constant on P ∪ { J \ I } \mathbf P∪\{J\backslash I\} P{J\I}, with additional constant value c J \ I = 0 c_{J\backslash I}=0 cJ\I=0, thus
p . c . ∫ J F = p . c . ∫ [ P ∪ { J \ I } ] F = ∑ K ∈ P ∪ { J \ I } c K ∣ K ∣ = ∑ K ∈ P c K ∣ K ∣ + 0 ⋅ ∣ J \ I ∣ = ∑ K ∈ P c K ∣ K ∣ = p . c . ∫ I f p.c.∫_JF=p.c.∫_{[\mathbf P∪\{J\backslash I\}]}F=∑_{K∈\mathbf P∪\{J\backslash I\}}c_K |K|\\=∑_{K∈\mathbf P}c_K |K|+0⋅|J\backslash I|=∑_{K∈\mathbf P}c_K |K|=p.c.∫_If p.c.JF=p.c.[P{J\I}]F=KP{J\I}cKK=KPcKK+0J\I=KPcKK=p.c.If

( h ) We have P J = { L ∩ J : L ∈ P } \mathbf P_{\mathbf J}=\{L∩J:L∈\mathbf P\} PJ={LJ:LP} and P K = { L ∩ K : L ∈ P } \mathbf P_{\mathbf K}=\{L∩K:L∈\mathbf P\} PK={LK:LP} be partitions of J J J and K K K, and since f f f is piecewise constant with P \mathbf P P, it’s easy to see f ∣ J f|_J fJ is piecewise constant with P J \mathbf P_{\mathbf J} PJ on J, f ∣ K f|_K fK is piecewise constant with P K \mathbf P_{\mathbf K} PK on K K K. As we have J ⊆ I J⊆I JI and K ⊆ I K⊆I KI, we define
F ( x ) = { f ∣ J ( x ) , x ∈ J 0 , x ∉ J , G ( x ) = { f ∣ K ( x ) , x ∈ K 0 , x ∉ K F(x)=\begin{cases}f|_J (x),& x∈J\\0, & x∉J\end{cases},\quad G(x)=\begin{cases}f|_K (x),& x∈K\\0, & x∉K\end{cases} F(x)={fJ(x),0,xJx/J,G(x)={fK(x),0,xKx/K
Since { J , K } \{J,K\} {J,K} is a partition of I I I, we have f = f ∣ J + f ∣ K = F + G f=f|_J+f|_K=F+G f=fJ+fK=F+G, thus use (a) ,(g) we have
p . c . ∫ I f = p . c . ∫ I ( F + G ) = p . c . ∫ I F + p . c . ∫ I G = p . c . ∫ J f ∣ J + p . c . ∫ K f ∣ K p.c.∫_If=p.c.∫_I(F+G)=p.c.∫_IF+p.c.∫_IG\\=p.c.∫_Jf|_J +p.c.∫_Kf|_K p.c.If=p.c.I(F+G)=p.c.IF+p.c.IG=p.c.JfJ+p.c.KfK

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值