Definition and Theorems of Chapter 9

Definition. A (sesqui-linear) form on a real or complex vector space V V V is a function f f f on V × V V\times V V×V with values in the field of scalars such that
( a ) f ( c α + β , γ ) = c f ( α , γ ) + f ( β , γ ) f(c\alpha+\beta,\gamma)=cf(\alpha,\gamma)+f(\beta,\gamma) f(cα+β,γ)=cf(α,γ)+f(β,γ)
( b ) f ( α , c β + γ ) = c ‾ f ( α , β ) + f ( α , γ ) f(\alpha,c\beta+\gamma)=\overline{c}f(\alpha,\beta)+f(\alpha,\gamma) f(α,cβ+γ)=cf(α,β)+f(α,γ)
for all α , β , γ ∈ V \alpha,\beta,\gamma\in V α,β,γV and all scalars c c c.

Theorem 1. Let V V V be a finite-dimensional inner product space and f f f a form on V V V. Then there is a unique linear operator T T T on V V V such that f ( α , β ) = ( T α ∣ β ) f(\alpha,\beta)=(T\alpha|\beta) f(α,β)=(Tαβ) for all α , β ∈ V \alpha,\beta\in V α,βV, and the map f → T f\rightarrow T fT is an isomorphism of the space of forms onto L ( V , V ) L(V,V) L(V,V).
Corollary. The equation ( f ∣ g ) = tr ( T f T g ∗ ) (f|g)=\text{tr}(T_fT_g^{\ast}) (fg)=tr(TfTg) defines an inner product on the space of forms with the property that ( f ∣ g ) = ∑ j , k f ( α k , α j ) g ( α k , α j ) ‾ (f|g)=\sum_{j,k}f(\alpha_k,\alpha_j)\overline{g(\alpha_k,\alpha_j)} (fg)=

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值