Definition and Theorems of Chapter 6

本文深入探讨了线性算子和矩阵的特征值和特征向量的概念,包括它们的定义、性质和相关定理。讨论了特征值与线性算子的可逆性、行列式的关系,以及特征向量与矩阵对角化的关系。还介绍了最小多项式、特征多项式及其应用,如Cayley-Hamilton定理,并讨论了线性算子的Jordan标准形和nilpotent算子。最后,阐述了如何通过特征值和特征向量对线性算子进行分解,如谱定理和主分解定理。
摘要由CSDN通过智能技术生成

Definition. Let V V V be a vector space over the field F F F and let T T T be a linear operator on V V V. A characteristic value of T T T is a scalar c c c in F F F such that there is a non-zero vector α \alpha α in V V V with T α = c α T\alpha=c\alpha Tα=cα. If c c c is a characteristic value of T T T, then
( a ) any α \alpha α such that T α = c α T\alpha=c\alpha Tα=cα is called a characteristic vector of T T T associated with the characteristic value c c c;
( b ) the collection of all α \alpha α such that T α = c α T\alpha=c\alpha Tα=cα is called the characteristic space associated with c c c.

Theorem 1. Let T T T be a linear operator on a finite-dimensional space V V V and let c c c be a scalar. The following are equivalent.
(i) c c c is a characteristic value of T T T.
(ii) The operator ( T − c I ) (T-cI) (TcI) is singular (not invertible).
(iii) det ⁡ ( T − c I ) = 0 \det (T-cI)=0 det(TcI)=0.

Definition. If A A A is an n × n n\times n n×n matrix over the field F F F, a characteristic value of A A A in F F F is a scalar c c c in F F F such that the matrix ( A − c I ) (A-cI) (AcI) is singular (not invertible).
The polynomial f = det ⁡ ( x I − A ) f=\det (xI-A) f=det(xIA) is called the characteristic polynomial of A A A.

Lemma. Similar matrices have the same characteristic polynomial.

Definition. Let T T T be a linear operator on the finite-dimensional space V V V. We say that T T T is diagonalizable if there is a basis for V V V each vector of which is a characteristic vector of T T T.

Lemma. Suppose that T α = c α T\alpha=c\alpha Tα=cα. If f f f is any polynomial, then f ( T ) α = f ( c ) α f(T)\alpha=f(c)\alpha f(T)α=f(c)α.

Lemma. Let T T T be a linear operator on the finite-dimensional space V V V. Let c 1 , … , c k c_1,\dots,c_k c1,,ck be the distinct characteristic values of T T T and let W i W_i Wi be the space of characteristic vectors associated with the characteristic value c i c_i ci. If W = W 1 + ⋯ + W k W=W_1+\cdots+W_k W=W1++Wk, then
dim ⁡ W = dim ⁡ W 1 + ⋯ + dim ⁡ W k \dim W=\dim W_1+\cdots+\dim W_k dimW=dimW1++dimWk
In fact, if B i \mathfrak B_i Bi is an ordered basis for W i W_i Wi, then B = ( B 1 , … , B k ) \mathfrak B=(\mathfrak B_1,\dots,\mathfrak B_k) B=(B1,,Bk) is an ordered basis for W W W.

Theorem 2. Let T T T be a linear operator on a finite-dimensional space V V V. Let c 1 , … , c k c_1,\dots,c_k c1,,ck be the distinct characteristic values of T T T and let W i W_i Wi be the null space of ( T − c i I ) (T-c_iI) (TciI). The following are equivalent.
(i) T T T is diagonalizable.
(ii) The characterristic polynomial for T T T is
f = ( x − c 1 ) d 1 ⋯ ( x − c k ) d k f=(x-c_1)^{d_1}\cdots (x-c_k)^{d_k} f=(xc1)d1(xck)dk
and dim ⁡ W i = d i , i = 1 , … , k \dim W_i=d_i,i=1,\dots,k dimWi=di,i=1,,k.
(iii) dim ⁡ W 1 + ⋯ + dim ⁡ W k = dim ⁡ V \dim W_1+\cdots+\dim W_k=\dim V dimW1++dimWk=dimV.

Definition. Let T T T be a linear operator on a finite-dimensional vector space V V V over the field F F F. The minimal polynomial for T T T is the (unique) monic generator of the ideal of polynomials over F F F which annihilate T T T.
If A A A is an n × n n\times n n×n matrix over F F F, we define the minimal polynomial for

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值