Definition and Theorems of Chapter 1

本文详细阐述了线性代数中的一些核心概念和定理,包括等价线性方程组、行等价矩阵的性质、行简化阶梯形矩阵和伴随矩阵的概念,以及矩阵乘法、逆矩阵的性质。这些理论对于理解和解决线性方程组问题至关重要。
摘要由CSDN通过智能技术生成

Theorem 1. Equivalent systems of linear equations have the same solutions.

Theorem 2. To each elementary row operations e \bold{e} e there corresponds an elementary row operation e 1 \bold{e}_1 e1, of the same type as e \bold{e} e, such that e 1 ( e ( A ) ) = e ( e 1 ( A ) ) = A \bold{e}_1(\bold{e}(A))=\bold{e}(\bold{e}_1(A))=A e1(e(A))=e(e1(A))=A for each A A A. In other words, the inverse operation (function) of an elementary row operation exists and is an elementary row operation of the same type.

Definition. If A A A and B B B are m × n m\times n m×n matrices over the field F F F, we say that B B B is row-equivalent to A A A if B B B can be obtained from A A A by a finite sequence of elementary row operations.

Theorem 3. If A A A and B B B are row-equivalent m × n m\times n m×n matrices, the homogeneous systems of linear equations A X = 0 AX=0 AX=0 and B X = 0 BX=0 BX=0 have exactly the same solutions.

Definition. An m × n m\times n m×n matrix R R R is called row-reduced if:
( a ) the first non-zero entry in each non-zero row of R R R is equal to 1;
( b ) each column of R R R which contains the leading non-zero entry of some row has all its other entries 0.

Theorem 4. Every m × n m\times n m×n matrix over the field F F F is row-equivalent to a row-reduced matrix.

Definition. An m × n m\times n m×n matrix R R R is called a row-reduced echelon matrix if:
( a ) R R R is row-reduced;
( b ) every row of R R R which has all its entries 0 occurs below every row which has a non-zero entry;
( c ) if rows 1 , … , r 1,\dots,r 1,,r are the non-zero rows of R R R, and if the leading non-zero entry of row i i i occurs in column k i ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值