Theorem 1. Equivalent systems of linear equations have the same solutions.
Theorem 2. To each elementary row operations e \bold{e} e there corresponds an elementary row operation e 1 \bold{e}_1 e1, of the same type as e \bold{e} e, such that e 1 ( e ( A ) ) = e ( e 1 ( A ) ) = A \bold{e}_1(\bold{e}(A))=\bold{e}(\bold{e}_1(A))=A e1(e(A))=e(e1(A))=A for each A A A. In other words, the inverse operation (function) of an elementary row operation exists and is an elementary row operation of the same type.
Definition. If A A A and B B B are m × n m\times n m×n matrices over the field F F F, we say that B B B is row-equivalent to A A A if B B B can be obtained from A A A by a finite sequence of elementary row operations.
Theorem 3. If A A A and B B B are row-equivalent m × n m\times n m×n matrices, the homogeneous systems of linear equations A X = 0 AX=0 AX=0 and B X = 0 BX=0 BX=0 have exactly the same solutions.
Definition. An m × n m\times n m×n matrix R R R is called row-reduced if:
( a ) the first non-zero entry in each non-zero row of R R R is equal to 1;
( b ) each column of R R R which contains the leading non-zero entry of some row has all its other entries 0.
Theorem 4. Every m × n m\times n m×n matrix over the field F F F is row-equivalent to a row-reduced matrix.
Definition. An m × n m\times n m×n matrix R R R is called a row-reduced echelon matrix if:
( a ) R R R is row-reduced;
( b ) every row of R R R which has all its entries 0 occurs below every row which has a non-zero entry;
( c ) if rows 1 , … , r 1,\dots,r 1,…,r are the non-zero rows of R R R, and if the leading non-zero entry of row i i i occurs in column k i ,